Клеточная инженерия занимается


Генетическая и клеточная инженерия

Возникновение генетической (генной) инженерии связано с созданием технологии выделения генов из ДНК и методики размножения нужного гена естествоиспытателем П. Бергом (1972 г., США). Внедрение в живой организм чужеродной генетической информации, генетическое манипулирование с целью изменения существующих и создания новых генотипов составляют одну из самых перспективных актуальных задач генной инженерии.

На основе генной инженерии возникла новая отрасль фармацевтической промышленности, представляющая собой перспективную ветвь современной биотехнологии – микробиологический синтез. С помощью методов генной инженерии получены клоны многих генов, инсулин, гистоны, коллаген и глобин мыши, кролика и человека, пептидные гормоны и интерферон, которые используют в лечебной практике.

Развитие генной инженерии делает возможным создание новых генотипов сельскохозяйственных растений и животных, для которых характерно отсутствие определенных болезней и увеличение продуктивности.

Методы генной инженерии широко применяются в медицине, фармакологии, микробиологии. Например, с помощью молекулярных проб (фрагментов ДНК) можно определить зараженность донорской крови вирусом СПИДа.

Разработаны генные технологии улучшения вакцин и создания новых вакцин. Генетики ведут исследования по генетической модификации свойств микроорганизмов, необходимых для сыроварения, виноделия, хлебопечения, производства кисломолочных продуктов.

В сельском хозяйстве используют модифицированные микробы для борьбы с вредными вирусами, микробами и насекомыми.

Клеточная инженерия занимается генетическими манипуляциями с отдельными клетками или группами клеток. К достижениям клеточной инженерии можно отнести методику оплодотворения в пробирке яйцеклетки с последующей имплантацией ее зародышей в матку. В настоящее время в мире насчитывается десятки тысяч «детей из пробирок».

Методы клеточной инженерии применяются в животноводстве при выведении животных с определенными, полезными для человека качествами. В данном случае в яйцеклетки подопытных животных внедряют участки молекул ДНК, изменяя генотип особи.

В растениеводстве с целью уменьшить сроки размножения и значительно увеличить число новых экземпляров используют клональное микроразмножение (получение растительного организма из одной клетки).

Однако необходимо отметить и негативный аспект развития генной и клеточной инженерии: становится реальной возможность получения новых патогенных вирусов и создания новых видов бактериологического оружия, что не только ведет к дестабилизации и напряженности отношений между странами, но и ставит под угрозу благополучие человеческой цивилизации.

В 1997 г. в печати появилась информация о том, что шотландский ученый Я. Вильмут разработал методику клонирования млекопитающих, в результате чего появилась клонированная овечка Долли. Было проведено 236 опытов, из которых только один оказался успешным – родилась овца, несущая весь генотип матери.

После этого все чаще стали возникать дискуссии по проблеме клонирования человека. Действительно, технологии генной инженерии приближаются к решению этой задачи. Но следует помнить, что клонирование человека вызовет целый ряд этических, юридических и религиозных проблем, среди которых наиболее острыми будут, вероятно, следующие:

♦ подрыв нравственных ценностей человечества;

♦ неблагоприятное влияние на социальную и биологическую устойчивость человеческой популяции;

♦ возможное зарождение цивилизации с иными нравственными критериями (или их отсутствием);

♦ появление криминальных объединений исследователей, использующих достижения генной инженерии в противоправных целях.

Таким образом, нравственные и социальные аспекты использования достижений генетики в интересах человека требуют широкого обсуждения, внимания и общественного контроля.

Вопросы для самопроверки

1. Почему электромагнетизм является атрибутом существования живой материи?

2. Что означает эволюционно-синергетический подход в описании природы?

3. В чем сущность самоорганизации в природе в целом и в живой материи в частности?

4. Какова роль синергетики для современного миропонимания?

5. Назовите основные свойства самоорганизующихся систем.

6. Дайте понятие бифуркационного дерева как модели эволюции природы, человека, общества.

7. Дайте определение жизни с точек зрения различных ученых. Назовите отличия живой материи от неживой.

8. Охарактеризуйте структурные уровни организации живой материи.

9. Сформулируйте основные гипотезы происхождения жизни на Земле.

10. Назовите основные этапы происхождения жизни по А. И. Опарину.

11. Охарактеризуйте клетку как элементарную единицу живого.

12. Назовите основные положения эволюционной теории Ч. Дарвина. Чем отличается синтетическая теория эволюции от дарвинской?

13. Что такое эволюционная картина мира и глобальный эволюционизм?

14. Дайте определения наследственности и изменчивости.

15. Что определяют понятия «наследование», «ген», «геном», «генофонд»?

16. Что представляют собой генотип и фенотип? Почему принято считать, что генотип определяет фенотип?

17. Дайте определение генетического кода и перечислите его свойства.

18. Перечислите основные принципы гибридологического анализа.

19. Какие признаки называются доминантными, а какие – рецессивными?

20. Какие организмы называются гомозиготными, а какие – гетерозиготными?

21. Дайте современную формулировку законов Менделя.

22. В чем состоят особенности генетики человека? Перечислите основные методы генетики человека.

Предыдущая64656667686970717273747576777879Следующая

Дата добавления: 2016-04-06; просмотров: 791;

ПОСМОТРЕТЬ ЕЩЕ:

Выращивание клеточных культур. Метод связан с культивированием отдельных клеток в питательных средах, где они образуют клеточные культуры. Оказалось, что клетки растений и животных, помещенных в питательную среду, содержащую все необходимые для жизнедеятельности вещества, способны делиться. Клетки растений обладают еще и свойством тотипотентности, то есть при определенных условиях они способны сформировать полноценное растение. Это дает возможность с помощью клеточных культур получать ценные вещества. Например, культура клеток женьшеня нарабатывает биологически активные вещества. С другой стороны, можно размножить эти растения в пробирках, помещая клетки в определенные питательные среды. Так можно размножать редкие и ценные растения. Это позволяет создавать безвирусные сорта картофеля и других растений.

Гибридизация клеток. Например, разработана методика гибридизации протопластов соматических клеток. Удаляются клеточные оболочки и сливаются протопласты клеток организмов, относящихся к разным видам — картофеля и томата, яблони и вишни. Перспективно создание гибридом, при котором осуществляется гибридизация различных клеток. Например, лимфоциты, образующие антитела, гибридизируются с раковыми клетками. В результате гибридомы нарабатывают антитела, как лимфоциты, и «бессмертны», как раковые клетки. Следовательно, они обладают возможностью неограниченного размножения в культуре.

Клонирование. Интересен метод пересадки ядер соматических клеток в яйцеклетки. Таким способом возможно клонирование животных, получение генетических копий от одного организма. В настоящее время получены клонированные лягушки, получены первые результаты клонирования млекопитающих.

Создание химерных животных.

Генетическая и клеточная инженерия

Возможно слияние эмбрионов на ранних стадиях, таким способом были получены химерные мыши при слиянии эмбрионов белых и черных мышей, химерное животное овца-коза.

⇐ Предыдущая123

Дата добавления: 2015-04-17; просмотров: 3749; Опубликованный материал нарушает авторские права? | Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:

  1. HTTP: методы доступа
  2. I. Теоретические методы психолого-педагогического исследования
  3. II. Эмпирические методы психолого-педагогического исследования
  4. III. Вспомогательные (статистические, математические) методы психолого-педагогического исследования
  5. N Методы общей психологии: наблюдение, опрос, тестирование
  6. Unit 10. Methods of cooking / Методы приготовления
  7. VI. Направления. Уровни. Методы
  8. XI. Способы (приемы или методы) управленческого учета
  9. XII. Характеристики, правила и методы оценки эффективности рекламы
  10. А расслабленная поза, комфортные условия, массаж, рефлексотерапия и другие методы, полезны на стадии реабилитации, то есть для восстановления
  11. А). Контрактные методы страхования валютного риска
  12. Автоматизированные методы управления РЧС

Клеточная инженерия

1 Клеточная селекция основана на высокой изменчивости популяции соматических клеток, усилении изменчивости с помощью различных мутагенов и на разработке селективных систем, позволяющих выявить и отобрать генетически измененные клоны клеток (мутантные, рекомбинантные и др.). Благодаря свойству тотипотентности из этих клеток регенерируют целые растения.Спонтанные мутации в популяции клеток наблюдаются редко, поэтому для повышения частоты мутаций используют индуцированный мутагенез. Получение мутантных форм при использовании селекции на клеточном уровне складывается из следующих этапов:

1) обработка мутагеном суспензии клеток и протопластов;

2) перенесение суспензии в селективные условия;

3) выделение развивающихся колоний;

4) отбор измененных резистентных к селективному фактору клонов;

5) индукции органогенеза;

6) регенерация измененных растений.

Методом клеточной селекции получены: линии кукурузы, устойчивые к гельминтоспориозу; линии картофеля: резистентные к фитофторе; растения табака, устойчивые к вирусу табачной мозаики. В культуре клеток получены мутанты с повышенным синтезом незаменимых аминокислот. Так отобраны штампы клеток моркови и табака, синтезирующие в 20-30 раз больше свободного триптофана по сравнению с исходными родительскими культурами. Этим способом получен целый ряд клеточных линий картофеля, моркови, риса, способных к сверхсинтезу лизина, метионина, пролина, фенилаланина, глицина. Это реальный путь создания растений с повышенным содержанием аминокислот, особенно незаменимых. Используя различные селективные системы, можно вести направленную селекцию по различным хозяйственно-ценным признакам, как то устойчивость к гербицидам, болезням, к различным стрессовым воздействиям (засоление, затопление, низкие и высокие температуры и др.).

Для получения мутантов в каждом случае необходимо разработать схему селекции и доказать генетическую природу измененных клеточных линий. Полученные изменения не всегда бывают связаны с мутациями, а могут носить модификационный характер и не наследоваться. Доказательством мутации является совокупность следующих критериев:

1) частота спонтанно измененных клеток должна быть низкая;

2) она значительно повышается при использовании мутагенов;

3) измененные клетки способны делиться и длительно расти;

4) стабильность измененного признака сохраняется и при отсутствии селективного давления;

5) обнаруживается продукт измененного гена (морфологические и биохимические маркеры).

Эффективность мутагена в культуре тканей повышается на гаплоидном уровне благодаря проявлению всех рецессивных мутаций в ранних поколениях, а также в культуре протопластов из-за их выравненности при изолировании из однородных тканей. Особенно перспективным источником выделения разнообразных мутаций являются протопласты гаплоидных растений.

Мутагенез и клеточная селекция как в случае соматических, так и половых клеток являются эффективными способами получения генетически измененных форм и новых сортов растений.

В результате генетической изменчивости in vitro возникают сомаклональные варианты – растения, отклоняющиеся от родительского типа. Сомаклональная вариабельность имеет несколько причин: перемещение подвижных генетических элементов, инверсии, транслокации, делеции, генные перестройки, связанные с дифференцировкой, соматический кроссинговер. Наследственная изменчивость в культуре клеток может иметь не только генетическую, но и эпигенетическую природу, то есть возникает вследствие изменения действия генов. Особый интерес представляют сомаклональные варианты злаков как источник получения ценных генотипов. Получены линии пшеницы, ячменя, риса, варьирующие по таким очень консервативным признакам, как высота растений, длина остей, окраска зерна, форма колоса, электрофоретические спектры запасных белков.

Сомаклональные варианты успешно используются как эффективный источник изменчивости для улучшения сортов сельскохозяйственных культур.

2 Основной задачей клеточной инженерии является конструирование новых форм растений с желаемыми признаками. Перспективный метод получения дальнородственных гибридов основывается на новой экспериментальной технике – парасексуальной гибридизации, осуществляемой путем слияния протопластов. Исследования по соматической гибридизации, осуществляемой путем слияния протопластов. Исследования по соматической гибридизации растений идут по трем основным направлениям:

1. изучение и реконструкция плазмагенов (генетический материал, локализованный вне ядра);

2. исследования по гибридизации клеток филогенетически отдаленных видов растений;

3. получение с помощью слияния протопластов соматических гибридов, представляющих практический интерес для селекции.

Основные различия соматической гибридизации от полового скрещивания заключается в следующем. Во-первых, с помощью половой гибридизации могут скрещиваться только растительные формы с нормальным морфогенезом и гаметогенезом. Презиготическую несовместимость можно преодолеть с помощью метода слияния протопластов. Во-вторых, половой процесс симметричен, то есть гаметы привносят в зиготу равные наборы ядерного генетического материала от обоих родителей. Продукты же слияния протопластов часто являются асимметричными гибридами, представляющими ценные формы, содержащие весь хромосомный набор культурного вида и лишь несколько хромосом или генов дикого родителя. В-третьих, внеядерный генетический материал у большинства растений при половом скрещивании наследуется строго однородительски – по материнской линии. Слияние протопластов позволяет получать уникальные сочетания митохондриальных и хлоропластных генов. И, наконец, четвертое отличие заключается в том, что половая гибридизация возможна только между филогенетически близкими видами растений. При соматической гибридизации возможно получение гибридов филогенетически отдаленных форм, которые обычным путем скрестить невозможно.

Слияние протопластов начинается с установления контакта (адгезии) между плазмалеммами соседних протопластов. Одновременно происходит изменение свойств мембран, приводящие к их слиянию. Расширение локальных цитоплазматических мостиков приводит к объединению цитоплазм с образованием гибридных клеток – цибридов.

Для формирования из гибридных протопластов растений, протопласты необходимо культивировать, чтобы они могли делиться и образовывать каллус, из которого впоследствии может регенерировать целое растение. Возрастает количество видов, для которых удалось провести весь цикл «растение – протопласты-каллус-растение».

Одним из важнейших моментов при проведении соматической гибридизации является отделение образовавшихся гибридных клеток от родительских. Селекция парасексуальных гибридов может проводиться либо на клеточном уровне, либо на стадии регенерации растений. Селекция на стадии регенерации растений имеет ряд существенных недостатков, осложняющих такой отбор:

1) нет уверенности, что все гибридные растения не являются потомками единственной гибридной клетки;

2) длительное время, требуемое для селекции регенерантов;

3) большая трудоемкость.

В связи с этим, разрабатываются методы отбора соматических гибридов на клеточном уровне.

Наиболее распространенными являются методами:

1) механической изоляции;

2) генетической комплементации;

3) физиологической комплементации;

4) физического обогащения.

В популяции растительных клеток in vitro после их слияния могут иметь место различные нежелательные генетические изменения (полиплоидия, хромосомные перестройки, различные мутации), приводящие к появлению форм, фенотипически сходных с гибридными. Кроме того, агрегация исходных родительских клеток может привести к образованию химерных тканей (растений). В связи с этим, отобранные формы соматических гибридов должны подвергаться дополнительным анализом для проверки их гибридности. Гибридологический анализ позволяет проводить оценку потомства F1 после самоопыления. Цитогенетический анализ основан на изучении числа и морфологии хромосом гибридных и родительских клеток. Более информативен метод дифференциального окрашивания хромосом. Цитогенетический анализ наиболее доказателен для дальнеродственных комбинаций- межсемейственных и метрибных.

Определение ферментативной активности и изучение спектра изоферментов позволяет выявить гибридную природу изучаемого материала. При этом в спектрах изоферментов гибрида должны совмещаться зоны, характерные для каждого из родителей. Большое значение имеет физиологическая стабильность различных форм изоферментов в зависимости от дифференцировки используемых для анализа клеток.

Анализ белка «Фракция 1». Этот белок локализован в хлоропластах и представляет собой фермент рибулозо-1,5-дифосфаткарбоксилазу с оксигенной активностью и состоит из большой и малой субъединиц. Полипептидный состав обеих субъединиц различен у разных видов растений, поэтому этот белок является маркером при изучении межвидовых гибридов. Малая субъединица кодируется ядерным геномом и наследуется двуродительски. Большая субъединица наследуется однородительски (матерински) и кодируется пластомом. Анализ белка позволяет получить доказательство гибридности материала и исключить химеризм. Рестриктный анализ ДНК органелл. Анализ ДНК органелл с помощью рестриктаз является точным методом определения гибридности по

цитоплазмону. Рестриктные спектры, получаемые в результате электрофореза видоспецифичны и могут быть использованы для характеристики ДНК органелл.

Молекулярная гибридизация нуклеиновых кислот. Применяют как ДНК-ДНК, так и ДНК-РНК-гибридизацию. Степень молекулярной гибридизуемости используется для характеристики систематического и филогенетического родства видов. Метод молекулярной гибридизации перспективен при изучении природы парасексуальных гибридов, особенно гибридов филогенетически отдаленных видов. В случае, когда хромосомный анализ не в состоянии выявить наличие в клетках гибридов хромосомного материала одного из родителей, наиболее подходящим методом для анализа гибридов является именно метод молекулярной гибридизации нуклеиновых кислот.

Фенотипическая изменчивость, наблюдаемая у соматических гибридов, является отражением тех генетических явлений, которые происходят до регенерации и указывают на следующие 4 источника изменчивости:

1) ядерная несовместимость;

2) межгеномная митотическая рекомбинация;

3) сомаклональная изменчивость;

4) органоидное расщепление.

Существует следующие ограничения, мешающие полному успеху метода соматической гибридизации:

1) применение этого метода требует эффективной регенерации растений из протопластов;

2) соматические гибриды не поддаются половому размножению, все межвидовые соматические гибриды являются стерильными;

3) для того, чтобы перенести полезные гены из диких видов в культурные, необходимо осуществить межгеномную рекомбинацию или хромосомные замещения между двумя видами;

4) при слиянии протопластов получаются растения с суммированным числом хромосом.

3.9.1. Клеточная и генная инженерия. Биотехнология

Однако быстрый прогресс в совершенствовании методов клеточной инженерии позволяет надеяться, что соматическая гибридизация как новая биотехнология станет основной в селекции для получения жизнеспособных гибридов нескрещивающихся видов растений.

Реконструкция клетки является еще одним бурно развивающимся направлением клеточной инженерии. Речь идет о сборке совершенно новой клетки за счет объединения (слияния) изолированных клеточных фрагментов друг с другом или с целыми клетками. В результате такой реконструкции можно создать клетку, ранее в природе не существовавшую. Однако многие проблемы, стоящие на пути исследований в данном направлении, связаны с ограниченным числом подходящих методик фрагментации и выделения гомогенных популяций интактных клеточных фрагментов.

Предыдущая18192021222324252627282930313233Следующая

Дата добавления: 2015-07-14; просмотров: 1325;

ПОСМОТРЕТЬ ЕЩЕ:

— система методов, позволяющая конструировать клетки нового типа на основе их культивирования, гибридизации и реконструкции. При гибридизации искусственно объединяют целые клетки с образованием гибридного генома. В ходе клеточной реконструкции новая жизнеспособная клетка создается из отдельных фрагментов различных клеток (ядра, цитоплазмы и др.).

КЛЕТОЧНАЯ ИНЖЕНЕРИЯ

С помощью клеточной инженерии удается соединить геномы весьма далеких видов (даже принадлежащих к различным царствам), а также осуществить слияние животной и растительной клетки. Методы культуры тканей дают возможность получать гаплоидные растения из пыльцевых зерен или яйцеклеток. Такие растения не способны образовывать гаметы, однако обработка этих растений колхицином дает возможность получать диплоидные плодовитые растения. Полученные диплоидные растения будут являться чистыми линиями и будут гомозиготны по всем без исключения генам. Такой способ позволяет получать чистые линии всего за несколько месяцев (вместо нескольких лет при традиционном способе путем инбридинга). Вегетативное размножение на искусственных питательных средах позволяет почти бесконечно размножать одно растение из маленьких кусочков вегетативных органов. Такой метод размножения применяется для овощных, плодовых и декоративных культур. Изучение гибридных клеток позволяет решать многие теоретические проблемы биологии и медицины: выяснять взаимные влияния ядра и цитоплазмы, механизмы дифференцировки и деления клеток. Такие клетки, приобретшие новые свойства, становятся производителями ценных лекарственных веществ и витаминов. Из гибридных клеток можно выращивать растения с новыми свойствами, объединяющие признаки растений разных видов, которые обычно не скрещиваются между собой. Методы клеточной инженерии позволяют вводить новые гены в клетки зародыша животных и получать таким образом животных с новыми генетическими свойствами.

Т. Л. Богданова  "Пособие для поступающих в вузы"

Понятие клеточной инженерии. История развития методов клеточной инженерии. Понятие культуры изолированных клеток и тканей, их виды. Состав питательных сред. Общая характеристика каллусных клеток. Получение и культивирование изолированных протопластов.

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

  • Клеточная инженерия. Культура протопластов. Выделение протопластов и их культивирование. Слияние протопластов. Соматическая гибридизация

    Клеточная инженерия как совокупность методов, используемых для конструирования новых клеток, история ее развития. Методы выделения протопластов. Описание способов культивирования протопластов: метод жидких капель и платирования. Соматическая гибридизация.

    презентация [661,9K], добавлен 28.02.2014

  • Клеточная инженерия

    Методы культивирования соматических клеток человека и животных на искусственных питательных средах как предпосылка к развитию клеточной инженерии. Этапы соматической гибридизации. Перенос генетического материала. Происхождение трансгенных растений.

    реферат [15,8 K], добавлен 23.01.2010

  • Генная инженерия

    Сущность генной и клеточной инженерии. Основные задачи генной модификации растений, анализ вредности их употребления в пищу. Особенности гибридизации растительных и животных клеток. Механизм получения лекарственных веществ с помощью генной инженерии.

    презентация [615,8 K], добавлен 26.01.2014

  • Молекулярно-генетический уровень организации жизни. Генетическая инженерия

    Использование клеток, не существовавших в живой природе, в биотехнологических процессах. Выделение генов из клеток, манипуляции с ними, введение в другие организмы в основе задач генной инженерии. История генной инженерии. Проблемы продуктов с ГМО.

    презентация [2,2 M], добавлен 21.02.2014

  • Клеточная теория

    Химический состав клеток, функции внутриклеточных структур, функции клеток в организме животных и растений, размножение и развитие клеток, приспособления клеток к условиям окружающей среды. Положения клеточной теории по М. Шлейдену и Т. Шванну.

    презентация [1,3 M], добавлен 17.12.2013

  • История изучения клеточной теории

    Цитология как наука, изучающая строение, функции и эволюцию клеток. История изучения клетки, появление первых микроскопов. Открытие мастерской оптических приборов в России. История развития клеточной теории, ее основные положения в современной биологии.

    презентация [347,3 K], добавлен 23.03.2010

  • Клетка: история изучения. Клеточная теория

    Исследование основных этапов развития клеточной теории. Анализ химического состава, строения, функций и эволюции клеток. История изучения клетки, открытие ядра, изобретение микроскопа. Характеристика форм клеток одноклеточных и многоклеточных организмов.

    презентация [1,4 M], добавлен 19.10.2013

  • Принципы биохимического исследования

    Влияние рН на биологические процессы.

    клеточная инженерия занимается

    Подходы к биохимическому исследованию. Изотонические солевые растворы. Стадии фракционирования клеток. Перфузия изолированных органов. Культуры тканей и клеток. Зависимость ионизации аминокислот и белков от рН.

    реферат [1,6 M], добавлен 26.07.2009

  • Генная инженерия

    Генная инженерия: история возникновения, общая характеристика, преимущества и недостатки. Знакомство с новейшими методами генной инженерии, их использование в медицине. Разработка генной инженерии в области животноводства и птицеводства. Опыты на крысах.

    курсовая работа [2,5 M], добавлен 11.07.2012

  • Клеточная инженерия

    Строение и функции оболочки клетки. Химический состав клетки. Содержание химических элементов. Биология опухолевой клетки. Клонирование клеток животных. А была ли Долли? Клонирование — ключ к вечной молодости? Культивирование клеток растений.

    реферат [27,3 K], добавлен 16.01.2005

  • Клеточная инженерия

    1 Клеточная селекция основана на высокой изменчивости популяции соматических клеток, усилении изменчивости с помощью различных мутагенов и на разработке селективных систем, позволяющих выявить и отобрать генетически измененные клоны клеток (мутантные, рекомбинантные и др.). Благодаря свойству тотипотентности из этих клеток регенерируют целые растения.Спонтанные мутации в популяции клеток наблюдаются редко, поэтому для повышения частоты мутаций используют индуцированный мутагенез. Получение мутантных форм при использовании селекции на клеточном уровне складывается из следующих этапов:

    1) обработка мутагеном суспензии клеток и протопластов;

    2) перенесение суспензии в селективные условия;

    3) выделение развивающихся колоний;

    4) отбор измененных резистентных к селективному фактору клонов;

    5) индукции органогенеза;

    6) регенерация измененных растений.

    Методом клеточной селекции получены: линии кукурузы, устойчивые к гельминтоспориозу; линии картофеля: резистентные к фитофторе; растения табака, устойчивые к вирусу табачной мозаики. В культуре клеток получены мутанты с повышенным синтезом незаменимых аминокислот. Так отобраны штампы клеток моркови и табака, синтезирующие в 20-30 раз больше свободного триптофана по сравнению с исходными родительскими культурами. Этим способом получен целый ряд клеточных линий картофеля, моркови, риса, способных к сверхсинтезу лизина, метионина, пролина, фенилаланина, глицина.

    Что такое клеточная инженерия? Генная и клеточная инженерия

    Это реальный путь создания растений с повышенным содержанием аминокислот, особенно незаменимых. Используя различные селективные системы, можно вести направленную селекцию по различным хозяйственно-ценным признакам, как то устойчивость к гербицидам, болезням, к различным стрессовым воздействиям (засоление, затопление, низкие и высокие температуры и др.).

    Для получения мутантов в каждом случае необходимо разработать схему селекции и доказать генетическую природу измененных клеточных линий. Полученные изменения не всегда бывают связаны с мутациями, а могут носить модификационный характер и не наследоваться. Доказательством мутации является совокупность следующих критериев:

    1) частота спонтанно измененных клеток должна быть низкая;

    2) она значительно повышается при использовании мутагенов;

    3) измененные клетки способны делиться и длительно расти;

    4) стабильность измененного признака сохраняется и при отсутствии селективного давления;

    5) обнаруживается продукт измененного гена (морфологические и биохимические маркеры).

    Эффективность мутагена в культуре тканей повышается на гаплоидном уровне благодаря проявлению всех рецессивных мутаций в ранних поколениях, а также в культуре протопластов из-за их выравненности при изолировании из однородных тканей. Особенно перспективным источником выделения разнообразных мутаций являются протопласты гаплоидных растений.

    Мутагенез и клеточная селекция как в случае соматических, так и половых клеток являются эффективными способами получения генетически измененных форм и новых сортов растений.

    В результате генетической изменчивости in vitro возникают сомаклональные варианты – растения, отклоняющиеся от родительского типа. Сомаклональная вариабельность имеет несколько причин: перемещение подвижных генетических элементов, инверсии, транслокации, делеции, генные перестройки, связанные с дифференцировкой, соматический кроссинговер. Наследственная изменчивость в культуре клеток может иметь не только генетическую, но и эпигенетическую природу, то есть возникает вследствие изменения действия генов. Особый интерес представляют сомаклональные варианты злаков как источник получения ценных генотипов. Получены линии пшеницы, ячменя, риса, варьирующие по таким очень консервативным признакам, как высота растений, длина остей, окраска зерна, форма колоса, электрофоретические спектры запасных белков.

    Сомаклональные варианты успешно используются как эффективный источник изменчивости для улучшения сортов сельскохозяйственных культур.

    2 Основной задачей клеточной инженерии является конструирование новых форм растений с желаемыми признаками.

    Перспективный метод получения дальнородственных гибридов основывается на новой экспериментальной технике – парасексуальной гибридизации, осуществляемой путем слияния протопластов. Исследования по соматической гибридизации, осуществляемой путем слияния протопластов. Исследования по соматической гибридизации растений идут по трем основным направлениям:

    1. изучение и реконструкция плазмагенов (генетический материал, локализованный вне ядра);

    2. исследования по гибридизации клеток филогенетически отдаленных видов растений;

    3. получение с помощью слияния протопластов соматических гибридов, представляющих практический интерес для селекции.

    Основные различия соматической гибридизации от полового скрещивания заключается в следующем. Во-первых, с помощью половой гибридизации могут скрещиваться только растительные формы с нормальным морфогенезом и гаметогенезом. Презиготическую несовместимость можно преодолеть с помощью метода слияния протопластов. Во-вторых, половой процесс симметричен, то есть гаметы привносят в зиготу равные наборы ядерного генетического материала от обоих родителей. Продукты же слияния протопластов часто являются асимметричными гибридами, представляющими ценные формы, содержащие весь хромосомный набор культурного вида и лишь несколько хромосом или генов дикого родителя. В-третьих, внеядерный генетический материал у большинства растений при половом скрещивании наследуется строго однородительски – по материнской линии. Слияние протопластов позволяет получать уникальные сочетания митохондриальных и хлоропластных генов. И, наконец, четвертое отличие заключается в том, что половая гибридизация возможна только между филогенетически близкими видами растений. При соматической гибридизации возможно получение гибридов филогенетически отдаленных форм, которые обычным путем скрестить невозможно.

    Слияние протопластов начинается с установления контакта (адгезии) между плазмалеммами соседних протопластов. Одновременно происходит изменение свойств мембран, приводящие к их слиянию. Расширение локальных цитоплазматических мостиков приводит к объединению цитоплазм с образованием гибридных клеток – цибридов.

    Для формирования из гибридных протопластов растений, протопласты необходимо культивировать, чтобы они могли делиться и образовывать каллус, из которого впоследствии может регенерировать целое растение. Возрастает количество видов, для которых удалось провести весь цикл «растение – протопласты-каллус-растение».

    Одним из важнейших моментов при проведении соматической гибридизации является отделение образовавшихся гибридных клеток от родительских. Селекция парасексуальных гибридов может проводиться либо на клеточном уровне, либо на стадии регенерации растений. Селекция на стадии регенерации растений имеет ряд существенных недостатков, осложняющих такой отбор:

    1) нет уверенности, что все гибридные растения не являются потомками единственной гибридной клетки;

    2) длительное время, требуемое для селекции регенерантов;

    3) большая трудоемкость.

    В связи с этим, разрабатываются методы отбора соматических гибридов на клеточном уровне.

    Наиболее распространенными являются методами:

    1) механической изоляции;

    2) генетической комплементации;

    3) физиологической комплементации;

    4) физического обогащения.

    В популяции растительных клеток in vitro после их слияния могут иметь место различные нежелательные генетические изменения (полиплоидия, хромосомные перестройки, различные мутации), приводящие к появлению форм, фенотипически сходных с гибридными. Кроме того, агрегация исходных родительских клеток может привести к образованию химерных тканей (растений). В связи с этим, отобранные формы соматических гибридов должны подвергаться дополнительным анализом для проверки их гибридности. Гибридологический анализ позволяет проводить оценку потомства F1 после самоопыления. Цитогенетический анализ основан на изучении числа и морфологии хромосом гибридных и родительских клеток. Более информативен метод дифференциального окрашивания хромосом. Цитогенетический анализ наиболее доказателен для дальнеродственных комбинаций- межсемейственных и метрибных.

    Определение ферментативной активности и изучение спектра изоферментов позволяет выявить гибридную природу изучаемого материала. При этом в спектрах изоферментов гибрида должны совмещаться зоны, характерные для каждого из родителей. Большое значение имеет физиологическая стабильность различных форм изоферментов в зависимости от дифференцировки используемых для анализа клеток.

    Анализ белка «Фракция 1». Этот белок локализован в хлоропластах и представляет собой фермент рибулозо-1,5-дифосфаткарбоксилазу с оксигенной активностью и состоит из большой и малой субъединиц. Полипептидный состав обеих субъединиц различен у разных видов растений, поэтому этот белок является маркером при изучении межвидовых гибридов. Малая субъединица кодируется ядерным геномом и наследуется двуродительски. Большая субъединица наследуется однородительски (матерински) и кодируется пластомом. Анализ белка позволяет получить доказательство гибридности материала и исключить химеризм. Рестриктный анализ ДНК органелл. Анализ ДНК органелл с помощью рестриктаз является точным методом определения гибридности по

    цитоплазмону. Рестриктные спектры, получаемые в результате электрофореза видоспецифичны и могут быть использованы для характеристики ДНК органелл.

    Молекулярная гибридизация нуклеиновых кислот. Применяют как ДНК-ДНК, так и ДНК-РНК-гибридизацию. Степень молекулярной гибридизуемости используется для характеристики систематического и филогенетического родства видов. Метод молекулярной гибридизации перспективен при изучении природы парасексуальных гибридов, особенно гибридов филогенетически отдаленных видов. В случае, когда хромосомный анализ не в состоянии выявить наличие в клетках гибридов хромосомного материала одного из родителей, наиболее подходящим методом для анализа гибридов является именно метод молекулярной гибридизации нуклеиновых кислот.

    Фенотипическая изменчивость, наблюдаемая у соматических гибридов, является отражением тех генетических явлений, которые происходят до регенерации и указывают на следующие 4 источника изменчивости:

    1) ядерная несовместимость;

    2) межгеномная митотическая рекомбинация;

    3) сомаклональная изменчивость;

    4) органоидное расщепление.

    Существует следующие ограничения, мешающие полному успеху метода соматической гибридизации:

    1) применение этого метода требует эффективной регенерации растений из протопластов;

    2) соматические гибриды не поддаются половому размножению, все межвидовые соматические гибриды являются стерильными;

    3) для того, чтобы перенести полезные гены из диких видов в культурные, необходимо осуществить межгеномную рекомбинацию или хромосомные замещения между двумя видами;

    4) при слиянии протопластов получаются растения с суммированным числом хромосом. Однако быстрый прогресс в совершенствовании методов клеточной инженерии позволяет надеяться, что соматическая гибридизация как новая биотехнология станет основной в селекции для получения жизнеспособных гибридов нескрещивающихся видов растений.

    Реконструкция клетки является еще одним бурно развивающимся направлением клеточной инженерии. Речь идет о сборке совершенно новой клетки за счет объединения (слияния) изолированных клеточных фрагментов друг с другом или с целыми клетками. В результате такой реконструкции можно создать клетку, ранее в природе не существовавшую. Однако многие проблемы, стоящие на пути исследований в данном направлении, связаны с ограниченным числом подходящих методик фрагментации и выделения гомогенных популяций интактных клеточных фрагментов.

    Предыдущая18192021222324252627282930313233Следующая

    Дата добавления: 2015-07-14; просмотров: 1324;

    ПОСМОТРЕТЬ ЕЩЕ:

    Оставьте комментарий