Так как они содержат функциональные гидроксильные и карбоксильные группы, то они вступают в химические реакции спиртов и карбоновых кислот.
Гидроксикислоты дают реакции, характерные для карбоновых кислот и спиртов, при этом могут затрагиваться как одна, так и обе функции
Кроме того, гидроксикислоты имеют ряд специфических свойств, обусловленных присутствием обеих групп и их взаимным расположением.
Отношение гидроксикислот к нагреванию.
aльфа-гидроксикислоты при нагревании с сильными минеральными кислотами разлагаются с образованием альдегида или кетона и муравьиной кислоты.
бетта -гидроксикислоты при нагревании переходят в непредельные кислоты.
Гамм-а и дельта-гидроксиокислоты претерпевают внутримолекулярное ацилирование с образованием циклических сложных эфиров – лактонов.
Биологически важные гидроксикислоты.
Гликолиевая кислота HOCH2COOH содержится во многих растениях, например, свекле и винограде.
Молочная кислота (соли лактаты) CH3CH(OH)COOH.
Широко распространена в природе, является продуктом молочнокислого брожения углеводов, накапливается в мышцах при интенсивной работе.
Яблочная кислота (соли малаты)
HOOCCH(OH)CH2COOH
Содержится в незрелых яблоках, рябине, фруктовых соках, один из продуктов распада углеводов в живых организмах.
Лимонная кислота (соли цитраты)
Содержится в плодах цитрусовых, винограде, крыжовнике. Является ключевым соединением в цикле трикарбоновых кислот. Цитрат натрия применяеся для консервирования донорской крови.
Винная кислота (соли тартраты) HOOCCH(OH)CH(OH)COOH.
D-винная кислота содержится во многих растениях, например, в винограде и рябине. Смешанный каливо-натриевый тартрат – сегнетова сольи спользуется для обнаружения альдегидов и сахаров.
Фенолокислоты.
Фенолокислоты — производные ароматических углеводородов, в молекулах которых атомы водорода бензольного ядра замещены на карбоксильные (-СООН) и гидроксильные (-ОН) группы.
Фенолокислоты одновременно обладают свойствами карбоновых кислот и фенолов. Кроме того для них характерны свойства, обусловленные наличием в молекуле обоих видов функциональных групп и бензольного ядра.
Фенолокислоты представляют собой твердые кристаллические вещества. Фенолокислоты, которые имеют в своем составе один фенольный гидроксил, сравнительно малорастворимые в холодной воде, но хорошо растворяются в горячей воде и многих органических растворителях. С увеличением числа фенольных гидроксилов растворимость фенолокислот увеличивается.
Распространение в природе
Фенолокислоты очень распространены в природе, поэтому их можно извлечь из природного сырья (такого, например, как боярышник кроваво-красный , рябина черноплодная , прополис).
Синтез
Нередко для получения фенолокислот применяют синтетические способы. В частности, 2-оксибензойную (салициловую) кислоту добывают из фенолята натрия и углекислого газа в автоклавах при 180 ° С с последующей обработкой продукта реакции соляной кислотой синтез Кольбе:
Химические свойства
Фенолокислоты одновременно обладают свойствами карбоновых кислот и фенолов . Кроме того, для них характерны свойства, обусловленные наличием в молекуле обоих видов функциональных групп и бензольного ядра.
Содержание
Гидроксильная группа — кислота
Cтраница 1
Гидроксильная группа кислот легче отщепляет протон, чем гидроксильная группа спиртов. [1]
Гидроксильная группа кислот легче отщепляет протон, чем гид-роксильная группа спиртов. [2]
Реакции, в которых принимает участие гидроксильная группа кислоты. [3]
При реакции этерификации действительно происходит замещение гидроксильной группы кислоты на алкоксильную группу, а не наоборот. [4]
Эти производные получаются в результате замены гидроксильной группы кислот на различные атомы и группы. Очевидно, что такого рода производных нет у спиртов, так как, например, галоидные алкилы ( которые получаются при замене спиртового гидроксила на галоид) систематика относит к нефункциональным производным углеводородов, а амины рассматриваются как самостоятельный класс соединений. Построение названия в этом случае должно отразить структурно более сложный процесс лишения функции не только водорода, но и кислорода. Для обозначения такого превращения предлагается суффикс ацид видоизменять в ацил. [5]
Амидами кислот называются производные кислот, образованные заменой гидроксильной группы кислоты на аминогруппу. [6]
Галогенангидриды — вещества общей формулы R-СО-X образуются в результате замещения гидроксильной группы кислот на галоген, чаще всего на хлор. [7]
Галогенангидриды — вещества общей формулы R-СО-X — образуются в результате замещения гидроксильной группы кислот на галоген, чаще всего на хлор. [8]
По данным Флетчера и др. [28], отношение смещения полосы поглощения гидроксильной группы кислоты, связанной с ТБФ, к смещению полосы поглощения фосфорильной группы является постоянной величиной. Это означает, что смещение полосы поглощения фосфорильной группы пропорционально энергии водородной связи. Действительно, на рис. 3 показана зависимость энергии водородной связи протонодонорнои молекулы от величины смещения полосы фосфорильной группы. Значения энергий водородных связей получены нами из исследования температурных зависимостей констант равновесия соответствующих реакций и парциального давления пара кислот над раствором ТБФ. Величина смещения Avpo измерена при помощи инфракрасного спектрометра ИКС-14. Следовательно, энергия водородной связи ТБФ с ионом гидроксония должна равняться 7 3 ккал. Если какая-либо кислота экстрагируется в виде соли гидроксония, то, очевидно, в этом случае энергия водородной связи гидроксония с реагентом будет мало зависеть от природы аниона. Отсюда следует, что в тех случаях, когда энергия водородной связи соли гидроксония с экстрагентом будет больше, чем энергия связи молекулы кислоты с тем же экстрагентом, тогда экстракция кислоты в форме соли гидроксония становится энергетически более выгодной. [9]
Функциональные производные карбоновых кислот представляют собой вещества, образующиеся при замещений гидроксильной группы кислоты на какую-либо другую группу X; эти вещества могут быть в соответствии с уравнением ( 16 — 6) вновь гидролизованы в кислоту. [10]
Функциональные производные карбоновых кислот представляют собой вещества, образующиеся при замещении гидроксильной группы кислоты на какую-либо другую группу X; эти вещества могут быть в соответствии с уравнением ( 16 — 6) вновь гидролизованы в кислоту. [11]
При взаимодействии спиртов с многоосновными кислотами, если в реакцию вступает только одна гидроксильная группа кислоты, образуются кислые сложные эфиры.
Гидроксикислоты
[12]
Опыт показал, что гидроксильные группы гидроксиполисили-катов так же активны, как и гидроксильные группы поликремние-вой кислоты. Поэтому все гидроксиполисиликаты вступают в реакции конденсации, в частности, с хлоридами, причем не обязательно того же элемента, который входит в состав гидроксиполисиликата. На этом и основан синтез твердых веществ методом молекулярного наслаивания. [13]
Реакция основана на взаимодействии кислот и их солей с анилином в присутствии соляной кислоты: гидроксильная группа кислоты замещается остатком анилина. [14]
Как указано на схеме, физическая адсорбция происходит в результате возникновения водородной связи при взаимодействии водорода гидроксильной группы кислоты с кислородом силоксано-вой группы адсорбента или кислорода карбонильной группы с водородом гидроксила силанольной группы. Здесь необходимо учитывать различие протонодонорных свойств ОН-групп адсорбента, а также образование прочных координационных связей с электро-ноакцепторными центрами поверхности. [15]
Страницы: 1 2
Примечание. Звездочкой отмечены хиральные центры, т. е. асимметрические углеродные атомы.
По взаимному расположению функциональных групп гидроксикислоты подразделяются на α-, β-, γ-кислоты и т. д:
СН3—СН2—СНСООН СН3—СН—СН2СООН СН2—СН2—СН2СООН
| | |
ОН ОН ОН
α -гидроксимасляная β-гидроксимасляная γ-гидроксимасляная
кислота кислота кислота
Многие гидроксикислоты, например молочная, яблочная, винная, изолимонная, имеют в молекуле хиральные центры, вследствие чего для них характерна оптическая изомерия. Так, молочная кислота существует в трех формах: две оптически активные, т. е. энантиомеры (зеркальные изомеры), а третья — оптическая неактивная, являющаяся рацемической смесью энантиомеров. Молочная кислота, выделенная из мышечной ткани, называемая мясо-молочной кислотой, является L-энантиомером. D-Молочная кислота образуется из сахаров при помощи особых бактерий-возбудителей брожения. Под действием молочнокислых бактерий в прокисшем молоке, при созревании сыров, при квашении овощей и в процессе силосования образующаяся молочная кислота является рацемической смесью обоих энантиомеров и не проявляет оптической активности:
![]() |
D-молочная L-молочная
кислота кислота
![]() |
D,L – молочная кислота
(D,L-рацемат)
![]() |
D-винная L-винная мезовинная кислота
кислота кислота (оптически неактивная)
виноградная кислота
(D,L-рацемат)
Яблочная кислота подобно молочной также существует в трех формах: D-энантиомер, L-энантиомер и их D, L-рацемат.
Молекула винной кислоты содержит два одинаковых хиральных центра, между которыми может проходить плоскость симметрии этой молекулы. Поэтому винная кислота в природе существует в четырех формах: D-винная, L-винная, D,L-рацемат, называемый виноградной кислотой, а также мезовинная кислота, являющаяся оптически неактивным стереоизомером вследствие внутримолекулярной компенсации из-за симметричности ее структуры. Оптические изомеры гидроксикислот отличаются не только физическими свойствами, но и тем, что их биологические и физиологические функции различны. В организме обычно присутствует один стереоизомер гидроксикислоты.
Среди специфических свойств гидроксикислот прежде всего следует отметить их склонность к реакции дегидратации при нагревании. При этом дегидратация для α-, β- и γ-гидроксикислот происходит различно.
![]() |
α-Гидроксикислоты дегидратируются межмолекулярно, при этом спиртовые группы взаимодействующих молекул взаимно ацилируются карбоксильными группами этих кислот с образованием устойчивых циклических сложных эфиров, называемых лактидами (от латинского названия молочной кислоты):
лактид
В этой электрофильно-нуклеофильной реакции каждая молекула за счет спиртовой группы выступает нуклеофилом, а за счет карбоксильной группы — электрофилом. Лактиды, как и сложные эфиры, при кипячении с водой в присутствии кислот или щелочей гидролизуются с образованием исходных кислот.
![]() |
β-Гидроксикислоты при нагревании дегидратируются внутримолекулярно за счет протона α-метиленовой группы, имеющего повышенную подвижность, образуя α,β -непредельные кислоты:
Эта реакция сопровождается внутримолекулярной окислительно-восстановительной дисмутацией за счет углеродных атомов. Подобные реакции дегидратации протекают в организме при участии дегидратаз. Они имеют место при β-окислении жирных кислот и дегидратации лимонной кислоты в цикле Кребса.
![]() |
γ- и δ-Гидроксикислоты, вследствие пространственной близости —ОН и СООН-групп, очень неустойчивы и легко отщепляют молекулу воды вследствие внутримолекулярного ацилирования спиртовой группы с образованием устойчивых пяти- и шестичленных циклических внутренних сложных эфиров —лактонов:
γ-гидроксимасляная γ-бутиролактон
кислота
![]() |
δ-гидроксивалериановая δ-валеролактон
кислота
Наличие в гидроксикислотах двух или более электроотрицательных групп способствует реакциям окислительно-восстановительной дисмутации, так как в их молекулах увеличивается число углеродных атомов, имеющих промежуточные степени окисления. Внутримолекулярная окислительно-восстановительная дисмутация α-гидроксикис-
лот происходит при их нагревании в присутствии H2SО4 и сопровождается разрывом связи С—С. При этом образуются муравьиная кислота и соответствующее карбонильное производное — альдегид или кетон:
![]() |
Лимонная кислота в этих условиях, наряду с муравьиной кислотой, образует ацетондикарбоновую кислоту, которая в результате внутримолекулярной окислительно-восстановитель
![]() |
ной дисмутации легко декарбоксилируется с образованием ацетона:
Приведенные реакции еще раз демонстрируют, что углеродный атом карбоксильной группы может быть и окислителем (первая реакция), и восстановителем (вторая реакция).
В организме гидроксикислоты дегидрируются под действием дегидрогеназ с окисленной формой кофермента НАД+, причем водородные атомы отщепляются от спиртовой группы и связанного с ней углеродного атома. При этом образуются соответствующие оксокислоты.
![]() |
Так, важной стадией β-окисления жирных кислот является дегидрирование β-гидроксикислот в виде производных с коферментом А в соответствующие производные β-оксокислот.
Подобная реакция межмолекулярной окислительно-восстановительной дисмутации протекает с изолимонной кислотой в цикле Кребса:
![]() |
Таким образом, гидроксикислоты чрезвычайно склонны к реакциям окислительно-восстановительной дисмутации, протекающей как внутримолекулярно, так и межмолекулярно.
Оксокарбоновые кислоты
Оксокарбоновыми кислотами называют соединения, содержащие одновременно карбоксильную и карбонильную группы.
ГИДРОКСИКИСЛОТЫ
Они подразделяются на альдегидо- и кетонокислоты. Наиболее часто встречающиеся в живых системах оксокарбоновые кислоты приведены в табл. 18.
Таблица 18
Химические свойства. Гидроксикислоты дают реакции, характерные для карбоксильной и гидроксильной групп, при этом могут участвовать как одна
Гидроксикислоты дают реакции, характерные для карбоксильной и гидроксильной групп, при этом могут участвовать как одна, так и обе функции.
1. Кислотность. Благодаря -I- эффекту гидроксильной группы гидроксикислоты по силе превосходят обычные карбоновые кислоты.
Оксикислоты
По мере удаления ОН-группы от карбоксильной ее влияние на кислотные свойства уменьшается.
2. По карбоксильной группе гидроксикислоты образуют соли (соли и эфиры молочной кислоты называются лактатами, винной — тартратами, лимонной — цитратами, яблочной — малатами), сложные эфиры, галогенангидриды; по ОН-группе гидроксикислоты образуют галогензамещенные кислоты (SN-замещение), сложные эфиры (SN-замещение), оксокислоты (окисление).
3. Специфические свойства
Свойства обусловлены присутствием обеих групп и их взаимным расположением.
а) Отношение гидроксикислот к нагреванию.
α-гидроксикарбоновые кислоты при нагревании образуют продукты межмолекулярной дегидратации — циклические сложные эфиры, называемые лактидами:
ß-гидроксикислоты при нагревании переходят в α,ß-непредельные кислоты:
γ,δ-гидроксиокислоты претерпевают внутримолекулярное ацилирование с образованием циклических сложных эфиров — лактонов:
γ-гидроксимасляная кислота γ-бутиролактон
б) Образование комплексных соединений.
α-гидроксикислоты образуют окрашенные хелатные комплексы с ионами переходных металлов (Cu2+ , Fe3+ и др.):
в) Отношение к серной кислоте.
В присутствии концентрированной серной кислоты α-гидроксикислоты разлагаются с образованием муравьиной кислоты и соответствующего карбонильного соединения — альдегида или кетона:
Нахождение в природе и применение кислот:
-Гликолиевая кислота содержится во многих растениях, например, свекле и винограде.
-Молочная кислота широко распространена в природе, является продуктом молочнокислого брожения углеводов, при этом образуется рацемическая D,L-молочная кислота. В мышцах человека при интенсивной работе образуется и накапливается L(+)-молочная (мясо-молочная) кислота — продукт расщепления и дальнейшего превращения полисахарида гликогена.
-Яблочная кислотасодержится в незрелых яблоках, рябине, фруктовых соках. Является ключевым соединением в цикле трикарбоновых кислот. В организме образуется путем гидратации фумаровой кислоты и далее окисляется до щавелевоуксусной кислоты.
-Лимонная кислота содержится в плодах цитрусовых, винограде, крыжовнике, листьях табака. Является ключевым соединением в цикле трикарбоновых кислот.
-Винная кислота имеет 3 стереоизомера: D-винную кислоту, L-винную кислоту и оптически неактивную мезовинную кислоту (см. «Изомерия»). D-винная кислота содержится во многих растениях, например в винограде и рябине.
-Сорбиновая кислота (2,4-гексадиеновая) кислота СН3–СН=СН–СН=СН-СООН была получена из ягод рябины (на латыни – sorbus). Эта кислота — прекрасный консервант, поэтому ягоды рябины не плесневеют.
-Салициловая кислота — ароматическая гидроксикарбоновая кислота (фенолкарбоновая кислота), широко распространена в природе
Салициловая кислота и ее сложные эфиры (салол, аспирин) широко используются в медицине, кислота — консервант пищевых продуктов.
Оксокислоты
Оксокислоты — гетерофункциональные соединения, содержащие карбоксильную и карбонильную (альдегидную или кетонную) группы. В зависимости от взаимного расположения этих групп различают α -, ß -,δ-, γ — и т.д. оксокарбоновые кислоты.
Для получения оксокислот применимы обычные методы введения карбоксильной и оксогрупп.
Предыдущая29303132333435363738394041424344Следующая
Дата добавления: 2016-02-20; просмотров: 1369;
ПОСМОТРЕТЬ ЕЩЕ:
Гидроксикислоты, их характеристика и свойства
Соединения этого класса являются достаточно простыми представителями природных соединений, они весьма часто встречаются в самых различных природных источниках. Гидроксиалкановые кислоты были выделены из ланолина, пчелиного воска, коры, корней, воскообразного слоя листьев, семян, бактерий и грибов. Наиболее часто встречаются б-гидроксикислоты, a в комбинации со сфингозинами животных и фитосфингозинами растений и Микроорганизмов они, очевидно, входят в состав всего живого.
В-гидроксикислоты играют важную роль в биосинтезе и катаболизме жирных кислот. Жирные кислоты с длинной цепью с одной и более гидроксильными группами обнаружены в жирах растительного и животного происхождения. В таких молекулах гидроксильные функции находятся, главным образом, на некотором расстоянии от карбоксильной группы.
Некоторые оксикислоты являются ключевыми соединениями на главных путях биосинтеза (глицериновая, мевалоновая, шикимовая, лимонная и др.), пантовая кислота входит в состав кофермента А (рис.1). Простейшая оксикислота гликолевая, НО-СН2-СООН, содержится в незрелом винограде, свекле, сахарном тростнике. Природная яблочная кислота, имеющая конфигурацию, содержится в кислых плодах, таких как незрелые яблоки, крыжовник, рябина, ревень. Лимонная кислота — важный продукт обмена веществ в живых организмах, некоторыми растениями накапливается в значительных количествах — в плодах цитрусовых — 6-8%, в листьях махорки — 8-14%, культуральными жидкостями некоторых бактерий — до 10%.
Рис.1. Оксикислоты
Следует отметить доступность многих гидроксикислот в лабораторных синтезах, а некоторых и в более крупных масштабах, что позволяет в ряде случаев использовать в практических целях синтетические вещества этого класса вместо труднодоступных соединений, полученных из природных источников.
Классификация гидроксикислот построена по общему принципу классификации бифункциональных соединений — согласно взаимному расположению функциональных групп при углеродной цепи и количеству этих функциональных групп (рис.2). Очень многие природные гидроксикислоты имеют тривиальные названия, которые прочно укоренились в химической и биохимической практике.
Рис.2. Функциональные группы при углеродной цепи
В структурном плане для этих соединений характерно появление молекулярного асимметрического центра, что позволяет присутствовать им в природных источниках в трех формах- -изомера, -изомера и -изомера. К примеру, молочная кислота образуется при молочнокислом брожении лактозы в виде рацемической смеси, тогда как в животном организме в результате гликолиза образуется -О-молочная кислота, которая накапливается в мышцах при интенсивной работе, вызывая характерную мышечную боль (рис.3).
Рис.3. Молочная кислота
Молекула винной кислоты, образующаяся в процессе брожения виноградного сока, имеет два асимметрических центра, а так как каждый из них может иметь D- и L-конфигурации, то это соединение принципиально может образовать уже четыре конфигурационных изомера: (D+D’), (L+L’), (D+L’) и (D’+L). Так как в молекуле винной кислоты оба асимметрических центра имеют одинаковое окружение и собственно одинаковое вращение, т.е. D=D’ и L=L то изомеры (D+L’) и (D’+L) идентичны между собой и оптически неактивны. Фактически молекула этой конфигурации имеет плоскость симметрии и молекулярная асимметрия в ней исчезает. Такой изомер, представляющий собой как бы внутримолекулярный рацемат, называют мезоформой. Этерификация одной карбоксильной группы мезоформы винной кислоты приводит к нарушению симметрии молекулы и, соответственно, к возникновению оптической активности у изомеров(D+L’) и (D’+L).
Та винная кислота, которая образуется при брожении виноградной кислоты, имеет (+)-D-конфигурацию, еще ее называют виннокаменной кислотой. Остальные изомеры получают рацемизацией природной (+)-D-винной кислоты, которая при кипячении со щелочью образует смесь D, L-рацемата и мезоформы. Процесс рацемизации винной кислоты обусловлен ее С-Н-кислыми свойствами — в щелочной среде она образует карбанион, который легко инвертирует (рис.4).
Рис.4. Процесс рацемизации винной кислоты
Таким образом, мы получаем общую картину конфигурационной изомерии молекул с двумя асимметрическими центрами, согласно которой такие соединения могут существовать в четырех стереоизомерных формах — паратреоизомеров и пара-эритро-изомеров. Мезоформа, являющаяся результатом идентичности двух асимметрических центров, представляет собой частный случай эритро-формы (рис.5).
Рис.5. Эритроформа
Треоизомеры являют собой пару энантиомеров, также как и эритро-изомеры. Относительно друг друга трео-и эритроизомеры определяются как диастереомеры. Если известно, что энантиомеры являются друг относительно друга оптическими антиподами, т.е. различаются только по своему отношению к плоскополяризованному свету, то диастереомеры различаются между собой целым рядом физических и химических свойств, так как они имеют различное взаимное расположение функциональных групп внутри молекул, а следовательно отличаются молекулярной формой, геометрическими параметрами, взаимным влиянием несвязанных атомов.
По химическим свойствам оксикислоты являют сумму свойств спиртов и карбоновых кислот, сочетая эти свойства в одной молекуле, и в то же время они проявляют ряд новых свойств, обязанных взаимному влиянию функциональных групп друг на друга или взаимодействию этих групп между собой. К таким появляющимся новым свойствам можно отнести: образование циклических диэфиров, лактидов из боксикислот и легкость их окисления до кетокислот; легкость реакций в-элиминирования в случае в-оксикислот; образование внутримолекулярных сложных эфиров из г-оксикислот. б-Оксикислоты образуют комплексные соединения хелатного типа (рис.6).
Рис.6. Комплексные соединения хелатного тип
Часто лактонная форма для г-окси-кислот является даже более выгодной, чем оксикислотная, и г-оксикислоты самопроизвольно переходят в циклическую форму. Это характерно для таких известных соединений этого класса как пантовая кислота, многие сескви-терпены. Стабильными макроциклическими лактонами представлены некоторые антибиотики и длинноцепочечные оксикислоты из группы мускусов; легко образует лактон и мевалоновая кислота (рис.7).
Особые, в какой-то мере, специфические свойства проявляют оксикислоты, являющиеся интермедиатами различных биосинтетических реакций при ферментативном катализе in vivo.
Глицериновая кислота в этих условиях обычно фигурирует в виде 3-фосфата, т.е. она избирательно этерифицируется фосфорсодержащими реагентами в присутствии ферментов по первой спиртовой группе.
Специфические свойства оксикислот
На следующем этапе 3-фосфат глицериновой кислоты элиминирует фрагмент фосфорной кислоты, образуя а-гидрокси-акриловую кислоту, которая сразу же изомеризуется в пировиноградную кислоту.
Рис.7. Образование лактона и мевалоновой кислоты
Но этот последний процесс является обратимым, и в условиях кислотно-основного катализа доля непредельной гидроксикислоты может быть существенной, хотя термодинамически более стабильна в данном случае б-кетокислота В свою очередь, енольная форма этой кислоты может быть стабилизирована, зафиксирована реакцией ее этерификации фосфорной кислотой. Таким образом, глицериновая кислота является источником двух новых соединений кислотного типа, а если учесть еще реакцию восстановления карбоксильной группы до альдегидной, то уже трех веществ, которые известны как важные промежуточные продукты основных химических процессов in vivo (рис.8). Следует заметить, что в заметных количествах они в организмах не накапливаются.
Рис.8. Образование соединений кислотного типа
Из природных оксикислот можно выделить мевалоновую, являющуюся ключевым соединением биосинтеза изопреноидов, легко претерпевающую in vivo синхронное элиминирование фрагментов С02 и Н20, образуя при этом пирофосфатное производное 2-метил-бутенола, с которого и начинаются процессы формирования изопреноидных углеродных систем (рис.9).
Рис.9. Формирование изопреноидных углеродных систем
Хинная кислота, являясь исходным соединением биосинтеза ароматических кислородсодержащих соединений, может накапливаться в некоторых растениях в заметных количествах.
Рис.10. Образование шикимовой кислоты
Но основное предназначение этой кислоты — образование шикимовой кислоты, ключевого интермедиата вышеуказанных синтезов, с последующим переходом к бензольным производным, используя реакции дегидратации и дегидрогенизации (рис.10).