Простейшие биоиндикаторы загрязнения водоемов

Похожие главы из других работ:

Агроэкологическая характеристика гербицидов

2.1 Влияние гербицидов на растения

Гербициды, поступающие в культурные растения через корневую систему или листья, могут оказывать на них угнетающее действие. Полагают, что степень токсичности зависит от скорости передвижения и детоксикации гербицидов в растениях (Крафте…

Адаптация растений к окружающей среде

2.2.1 Растения и тяжелые металлы

В настоящее время мало известно о механизмах накопления растениями тяжелых металлов, потому что до сих пор основное внимание уделялось усвоению соединений азота, фосфора и других элементов питания из почвы. Кроме того…

Адаптация растений к окружающей среде

2.4.2 Влияние света на растения

Солнечный свет — один из наиболее важных для жизни растений экологических показателей. Он поглощается хлорофиллом и используется при построении первичного органического вещества. Почти все комнатные растения светолюбивы, т.е…

Биоиндикация как метод исследования экологических систем

3. ЖИВЫЕ БИОИНДИКАТОРЫ

Лучший индикатор опасных загрязнений — прибрежное обрастание, располагающиеся на поверхностных предметах у кромки воды. В чистых водоемах эти обрастания ярко-зеленого цвета или имеют буроватый оттенок…

Биоиндикация как метод оценки состояния окружающей среды

2. Биоиндикаторы

Биоиндикаторы — это биологические объекты (от клеток и биологических макромолекул до экосистем и биосферы), используемые для оценки состояния среды. Когда хотят подчеркнуть то…

Ботанический сад г. Кирова

2. Декоративные растения Ботанического сада

Весной, летом и осенью экспозиция цветочно-декоративных растений наиболее популярна у посетителей. От первых весенних дней до снегопада здесь не прекращается праздник цветов. Ими можно любоваться на коллекционных участках…

Живые утилизаторы

§4. Растения утилизаторы

Многие ученые предлагает устранять экологические проблемы с помощью растений. С эйхорнией, более известной в России под названием водяной гиацинт, экспериментируют в новосибирском Институте цитологии и генетики СО РАН. В небольшой бассейн…

Загрязнение тяжёлыми металлами придорожной травянистой растительности Павловского района

1.3 Растения-биоиндикаторы

Растениями-индикаторами называют растения, тесно связанные с определенными экологическими условиями. По их присутствию узнают о содержании определённых микроэлементов и веществ…

Мониторинг загрязнения почв в санитарно-защитной зоне ОАО "Электротяга" с оценкой по биоиндикатору

2.2 Растения-биоиндикаторы

Растения-биоиндикаторы — это растения, для которых характерна резко выраженная адаптация к условиям окружающей среды.

3. Живые биоиндикаторы

При наличии таких растений можно качественно или количественно оценить условия окружающей среды…

Организмы – индикаторы качества среды

2. Биоиндикаторы

Биоиндикаторы — это биологические объекты (от клеток и биологических макромолекул до экосистем и биосферы), используемые для оценки состояния среды. Когда хотят подчеркнуть то…

Растительный мир как часть биосферы

4.2 Лекарственные растения

На протяжении многих веков человек добывает из растений многообразные лекарственные вещества, которые так необходимы в медицинской и ветеринарной практике…

Растительный мир Омской области

2.4 Полевые сорные растения

И все же наша область, будто «создана» для лесных сообществ.

Значительные районы области, где нет застроек и промышленных комплексов — это безлесье и обезлесенные площади, большей частью возделываемые поля. Такая безлесная область…

Экология городских растений

II. Растения в городе

В современных условиях крупного города очищающая роль растений не так уж велика: они сами по себе не в состоянии обеспечить нас тем количеством кислорода, в котором мы нуждаемся. На первое место выходит декоративная…

Экология Самарского региона

Флора и охраняемые растения

Богатство и своеобразие флоры Самарского региона определяют большая территория (53,6 кмІ), особенности климата, рельефа и геолого-почвенных условий Иванов Е.И. Экология Самарского региона. — М.: Промиздат, 2006. — С.67.. Виды растений…

Электромагнитное загрязнение окружающей среды

1.5.2.5 Воздействие электромагнитного поля на растения

В результате многочисленных исследований выяснено, что электромагнитные волны оказывают существенное воздействие на биологические объекты, проявляющиеся в многообразии индуцированных эффектов. Как слабые…

Многие живые организмы реагируют на любые изменения в окружающей среде. Это свойство замечать химические, экологические, физические изменения носит название биоиндикация, и проявляется в особенностях роста и развития этих живых организмов. Часто в виде индикаторов выступают именно растения или их группы, которые показывают качество условий проживания. Например, лишайникиочень чувствительны к повышению в воздухе концентрации диоксида серы, поэтому вблизи автомагистралей, металлургических предприятий, ТЭС они практически не встречаются

Из растений прибрежных зон или водоемов следует отметить, как индикаторы чистоты:

  • кувшинки белые,
  • ольха черная,
  • верба.

Они негативно реагируют на любое повышение уровня загрязненности. А вот чрезмерное «цветение» воды из-за сине-зеленых водорослей свидетельствует об органическом загрязнении. Благодаря способности многих растений накапливать в себе вредные вещества, такие как тяжелые металлы, можно определить состав почвы и воздуха, проведя биохимический анализ частей растения. Из-за этого свойства не рекомендуется употреблять в пищу растения, произрастающие возле дорог или больших промышленных предприятий.

Растения, проявляющие специфические реакции на присутствие в воздушной среде примесей, могут быть использованы в качестве биологических индикаторов загрязнения воздуха. Многообразие и средовая обусловленность жизненных функций растений позволяет рассматривать их как основной объект биологического мониторинга среды.

Растения считаются надёжными индикаторами загрязнений природной среды различными токсичными веществами в связи с тем, что не могут уйти от стрессового воздействия и вынуждены адаптироваться к нему с помощью физиолого-биохимических, ультраструктурных и анатомо-морфологических перестроек. Поэтому фиксация и оценка этих изменений дают достоверную картину условий место произрастания растений и отражают состояние городской среды. Наблюдая за признаками повреждения растений:

  • нарушением их роста и репродуктивного цикла,
  • снижением урожайности,
  • особенностями распространения отдельных видов,

можно обнаружить присутствие в воздухе специфических загрязняющих веществ и выявить уровень загрязнения окружающей среды.

Например, для контроля за загрязнением среды фтором предложен способ использования дернины трав, обладающих устойчивостью к этому токсиканту, интенсивным ростом и высокой газопоглотительиой способностью. Периодически определяя фтор в листьях этих травянистых растений, можно установить дальность распространения фторсодержащих выбросов от источника эмиссии и пригодность трав, содержащих фтор для скармливания или выпаса животных. Индикатором на фтор является также плевел.

Для экологической оценки прогнозирования наиболее перспективны древесные формы, так как они являются регистрирующими структурами достаточно длительного действия. Из древесных пород к наиболее чувствительным к загрязнениям относят сосну, липу, берёзу.

Влияние городской среды сказывается на самых разных сторонах жизнедеятельности растений.

Определение загрязненности водоема путем биоиндикации

Фотосинтетический аппарат, имеющий огромную поверхность контакта со средой, в первую очередь и в наибольшей степени подвергается неблагоприятным воздействиям городских условий. Исследуя экологический профиль города (лес — загородный парк -парк жилого района — парк промышленного района — уличные посадки — территория промышленного предприятия) можно определить, как изменяется состояние фотосинтетического аппарата по мере возрастания напряжённости влияния городской среды. Изменения в строении фотосинтетического аппарата происходят на всех уровнях его организации (крона, лист, ткани, клетка, хлоропласт). В городских условиях изменяется структура, форма и размеры кроны. Увеличивается её прозрачность из-за меньшего количества листьев и уменьшения листовых пластинок (у всех пород в городе площадь листа уменьшается в 1,5 -2 раза). Строение листа изменяется в сторону ксероформоза. Листовая пластинка утолщается в результате утолщения мезофилла с сохранением числа слоев клеток.

Мониторинг состояния зелёных насаждений важен для выяснения непосредственной реакции живого организма на изменения качества окружающей среды как в целом городе, так и в любой его точке. Загрязнения могут оцениваться по общему состоянию и, особенно, по приростам древесных. Но необходимо учитывать, что индикационные возможности одних и тех же видов в разных регионах могут быть различными.

Предотвратить или ослабить повреждающее действие загрязняющих воздух веществ на растения позволяет создание оптимальных условий обеспеченности растений в особых случаях (для защиты высокоценных культур от сильного загрязнения) физиологически активными веществами для нейтрализации поступающих в листья токсинов. Наиболее перспективный путь:

  • подбор невосприимчивых к токсикантам растений,
  • выведение устойчивых сортов.

На рост растений отрицательное влияние оказывает также загрязнение почв токсическими веществами, вызываемое захоронением в почве промышленных отходов, выпадение из атмосферы разных примесей, а в некоторых случаях — использование в качестве удобрений осадков сточных вод, коми остов из городского мусора и прочее. В глобальном масштабе концентрация в почве нежелательных веществ еще не достигла уровней, при которых могут проявляться их токсические свойства. Тем не менее увеличивающееся с каждым годом поступление в окружающую среду отходов может создавать в отдельных районах опасные ситуации, "первую очередь это относится к накоплению свинца, кадмия, мышьяка и ртути.

В условиях загрязнения окружающей среды разрабатываемые методы позволяют лишь частично решить проблемы защиты растений от повреждающего действия вредных веществ, содержащихся в воздухе и почве. Радикальное решение заключается в совершенствовании технологических процессов и разработке безотходного или малоотходного производства.

Социальные кнопки для Joomla

Биоиндикация — обнаружение и определение экологически значимых природных и антропогенных нагрузок на основе реакций на них живых организмов непосредственно в среде их обитания. Биологические индикаторы обладают признаками, свойственными системе или процессу, на основании которых производится качественная или количественная оценка тенденций изменений, определение или оценочная классификация состояния экологических систем, процессов и явлений. В настоящее время можно считать общепринятым, что основным индикатором устойчивого развития в конечном итоге является качество среды обитания.

Изменения растительности под действием различных факторов внешней среды влияют на состояние биогеоценоза в целом и, вследствие этого, могут использоваться в качестве диагностических признаков. Сведения о структурно-функциональных нарушениях, характере поступления, превращении и аккумуляции токсикантов в органах растений в техногенной среде можно получить с использованием различных методов (анатомических, физиологических, биохимических и т.д.).

Существует две формы биоиндикации: когда одинаковые реакции организма могут быть вызваны различными факторами среды (в том числе и антропогенного происхождения) — тогда речь идёт о неспецифической биоиндикации; когда изменения реакции чётко связаны с изменением конкретного фактора — специфическая биоиндикация.

Биоиндикация может быть специфической и неспецифической. В первом случае изменения живой системы можно связать только с одним фактором среды. Например, высокая концентрация в воздухе озона вызывает появление на листьях табака (сорта Веl WЗ) серебристых некрозных пятен. Во втором случае различные факторы среды вызывают одну и ту же реакцию. Например, снижение численности почвенных беспозвоночных может происходить и при различных видах загрязнения почвы, и при вытаптывании, и в период засухи и по другим причинам.

При другом подходе различают прямую и косвенную биоиндикацию. О прямой биоиндикации говорят, когда фактор среды действует на биологический объект непосредственно. В описанном выше случае серебристые пятна на листьях табака возникают от прямого действия озона.

При косвенной биоиндикации фактор действует через изменение других (абиотических или биотических) факторов среды. Например, применение одного из гербицидов (2,2-дихлорпропионовой кислоты) на лугу ведет к уменьшению злаков в растительном покрове (с 55 до 12%) и, соответственно, увеличению разнотравья, что может рассматриваться как прямая биоиндикация.

Существуют различные виды биоиндикации. Если одна и та же реакция вызывается различными факторами, то говорят о неспецифической биоиндикации. Если же те или иные происходящие изменения можно связать только с одним фактором, то речь идет о специфической биоиндикации. Например, лишайники и хвойные деревья могут характеризовать чистоту воздуха и наличие промышленных загрязнений в местах их произрастания. Видовой состав животных и низших растений, обитающих в почвах, является специфическим для различных почвенных комплексов, поэтому изменения этих группировок и численности видов в них могут свидетельствовать о загрязнении почв химическими веществами или изменении структуры почв под влиянием хозяйственной деятельности.

Методы биоиндикации подразделяются на два вида: регистрирующая биоиндикация и биоиндикация по аккумуляции. Регистрирующая биоиндикация позволяет судить о воздействии факторов среды по состоянию особей вида или популяции, а биоиндикация по аккумуляции использует свойство растений и животных накапливать те или иные химические вещества (например, содержание свинца в печени рыб, находящихся на конце пищевой цепочки, может достигать 100-300 ПДК). В соответствии с этими методами различают регистрирующие и накапливающие индикаторы.

Регистрирующие биоиндикаторы реагируют на изменения состояния окружающей среды изменением численности, фенооблика, повреждением тканей, соматическими проявлениями (в том числе уродливостью), изменением скорости роста и другими хорошо заметными признаками.

Биоиндикаторы

В качестве примера регистрирующих биоиндикаторов можно назвать лишайники, хвою деревьев (хлороз, некроз) и их суховершинность. Однако с помощью регистрирующих биоиндикаторов не всегда возможно установить причины изменений, то есть факторы, определившие численность, распространение, конечный облик или форму биоиндикатора. Это один из основных недостатков биоиндикации, поскольку наблюдаемый эффект может порождаться разными причинами или их комплексом.

Накапливающие индикаторы концентрируют загрязняющие вещества в своих тканях, определенных органах и частях тела, которые в последующем используются для выяснения степени загрязнения окружающей среды при помощи химического анализа.

Какой бы современной ни была аппаратура для контроля загрязнения и определения вредных примесей в окружающей среде, она не может сравниться со сложно устроенным «живым прибором». Правда, у живых приборов есть серьезный недостаток — они не могут установить концентрацию какого-либо вещества в многокомпонентной смеси, реагируя сразу на весь комплекс веществ. В то же время физические и химические методы дают количественные и качественные характеристики фактора, но позволяют лишь косвенно судить о его биологическом действии. С помощью биоиндикаторов можно получить информацию о биологических последствиях и сделать только косвенные выводы об особенностях самого фактора.

Мониторинг с применением накапливающих биоиндикаторов зачастую требует применения сложных и дорогостоящих приборов, оборудования, трудоемких методик, что под силу только специальным лабораториям. Но в основном методы биоиндикации не требуют значительных затрат труда, сложного и дорогостоящего оборудования, а поэтому могут широко использоваться в школьном экомониторинге.

Наиболее конструктивно использовать биоиндикаторы одновременно с инструментальным контролем за состоянием окружающей природной среды, применяемым при локальном мониторинге источников или объектов загрязнения.

Читайте также:

Биоиндикаторы

Биоиндикаторы – это биологические объекты (от клеток и биологических макромолекул до экосистем и биосферы), используемые для оценки состояния среды. Когда хотят подчеркнуть то, что биоиндикаторы могут принадлежать к разным уровням организации живого, употребляют термин "биоиндикаторные системы".

Критерии выбора биоиндикатора:

  • быстрый ответ;

       ·  надежность (ошибка <20%);

       ·  простота;

       ·  мониторинговые возможности (постоянно присутствующий в природе объект).

Типы биоиндикаторов:

1. Чувствительный. Быстро реагирует значительным отклонением показателей от нормы. Например, отклонения в поведении животных, в физиологических реакциях клеток могут быть обнаружены практически сразу после начала действия нарушающего фактора.

2. Аккумулятивный. Накапливает воздействия без проявляющихся нарушений. Например, лес на начальных этапах его загрязнения или вытаптывания будет прежним по своим основным характеристикам (видовому составу, разнообразию, обилию и пр.). Лишь по прошествии какого-то времени начнут исчезать редкие виды, произойдет смена преобладающих форм, изменится общая численность организмов и т.д. Таким образом, лесное сообщество как биоиндикатор не сразу обнаружит нарушение среды.

Биоиндикаторы принято описывать с помощью двух характеристик: специфичность и чувствительность.

При низкой специфичности биоиндикатор реагирует на разные факторы, при высокой – только на один (см. примеры по специфической и неспецифической биоиндикации).

При низкой чувствительности биоиндикатор отвечает только на сильные отклонения фактора от нормы, при высокой – на незначительные.

Тест-организмы – это биоиндикаторы (растения и животные), которых используют для оценки качества воздуха, воды или почвы в лабораторных опытах.

Примеры тест-организмов:

       ·  одноклеточные зеленые водоросли (хлорелла, требоуксия из лишайников и пр.);

       ·  простейшие: инфузория-туфелька;

       ·  членистоногие: рачки дафния и артемия;

       ·  мхи: мниум;

       ·  цветковые: злак плевел, кресс-салат.

Одно из основных требований к тест-организмам – это возможность получения культур из генетически однородных организмов. В таком случае отличия между опытом и контролем с большей вероятностью могут быть отнесены на счет нарушающего фактора, а не индивидуальных различий между особями.

3. Биоиндикация на разных уровнях организации живого

Биоиндикация может осуществляться на всех уровнях организации живого: биологических макромолекул, клеток, тканей и органов, организмов, популяций (пространственная группировка особей одного вида), сообществ, экосистем и биосферы в целом. Признание этого факта – достижение современной теории биоиндикации.

На низших уровнях биоиндикации возможны прямые и специфические формы биоиндикации, на высших – лишь косвенные и неспецифические. Однако именно последние дают комплексную оценку влияния антропогенных воздействий на природу в целом.

Клеточный и субклеточный уровни

Биоиндикация на этих уровнях основана на узких пределах протекания биотических и физиологических реакций. Ее достоинства заключаются в высокой чувствительности к нарушениям, позволяющим выявить даже незначительные концентрации поллютантов, и выявить их быстро. Именно на этих уровнях возможно наиболее раннее выявление нарушений среды. К числу недостатков относится то, что биоиндикаторы-клетки и молекулы требуют сложной аппаратуры.

Результаты действия поллютантов следующие:

— нарушение биомембран (особенно их проницаемости);

— изменение концентрации и активности макромолекул (ферменты, белки, аминокислоты, жиры, углеводы, АТФ);

— аккумуляция вредных веществ;

— нарушение физиологических процессов в клетке;

— изменение размеров клеток.

Чтобы разработать тот или иной способ биоиндикации на этом уровне, необходимо выяснить механизмы действия поллютантов.

Влияние поллютантов на биомембраны (на примере клеток растений)

1. Сернистый газ. SO2 проникает в лист через устьица, попадает в межклеточное пространство, растворяется в воде с образованием SO32-/HSO3- ионов, разрушающих клеточную мембрану. В итоге снижается буферная емкость цитоплазмы клетки, изменяются ее кислотность и редокс-потенциал.

2. Озон и другие окислители, например, пероксиацетилнитрата. Нарушают проницаемость мембран. Этот эффект усугубляется в присутствии ионов тяжелых металлов.

Во всех случаях особенно сильно страдают мембраны хлоропластов – тилакоидные. Их разрушение – основная причина снижения фотосинтеза при воздействии поллютантов. Процесс фотосинтеза как очень чувствительный служит для биоиндикации загрязнения среды. При этом оценивают: 1) интенсивность фотосинтеза, 2) флуоресценцию хлорофилла. В качестве тест-организма часто используют мох мниум.

Изменение концентрации и активности макромолекул

Ферменты. Действие поллютантов на ферменты нарушает процесс нормального присоединения фермента к субстрату (С-Ф). Это может происходить тремя различными способами:

1) к ферменту вместо субстрата присоединяется поллютант-ингибитор с образованием комплекса Ф-И (отравление СО);

2) поллютант ингибирует фермент, расщепляя его связь с субстратом: С÷Ф;

3) присоединяясь к субстрату вместе с ферментом, поллютант ингибирует его: С-Ф-И.

В итоге нарушаются различные процессы, например:

— ассимиляция углекислого газа в процессе фотосинтеза. SO2 связывается с активным центром ключевого фермента фотосинтеза (рибулозодифосфаткарбоксилазы) вместо СО2 и тормозит фиксацию СО2 в цикле Кальвина. Газообмен СО2 в принципе пригоден для биоиндикации;

— взаимодействие SO2 с HS-группами белков, что ведет к разрушению ферментов (показано для малатдегидрогеназы).

Синтез защитных веществ в клетке. В клетках растений под действием различных нарушений накапливаются определенные защитные вещества. Биоиндикация связана с определением концентрации этих веществ в растениях:

— пролин – аминокислота, считающаяся индикатором стресса. Ее концентрация возрастала в листьях тисса вблизи дорог с интенсивным движением транспорта, в листьях каштана при засолении почвы;

— аланин – аминокислота, накапливалась в клетках водоросли требоуксии, сосны и кукурузы при загрязнении;

— пероксидаза и супероксиддисмутаза. При воздействии стрессоров образуются токсичные перекиси, которые пероксидаза обезвреживает. Например, SO2 вызывает увеличение активности пероксидазы и появление изоферментов супероксиддисмутазы, что можно выявить с помощью гель-электрофореза.

Пигменты. При загрязнении в клетках растений происходят следующие изменения пигментов:

— уменьшается содержание хлорофилла. Этапы его разрушения (феофетин, феофорбиды, распад пиррольного кольца);

— понижается отношение хлорофилл а / хлорофилл в. Отмечается, в частности, у ели при хроническом задымлении SО2;

— замедляется флуоресценция хлорофилла.

При биоиндикации все эти изменения фиксируют с помощью приборов: хроматографа, спектрофотометра и флуориметра.

Аденозинтрифосфорная кислота. Содержание АТФ – универсального источника энергии в клетке – важный показатель ее жизнеспособности. Для его количественной оценки предложен показатель "энергетического заряда".

.

АДФ и АМФ – менее насыщенные энергией молекулы аденозиндифосфорной и аденозинмонофосфорной кислот. Показано, что с ростом концентрации SO2 в воздухе ЭЗ клеток растений (сосна, водоросль требоуксия) снижается.

Белки. При загрязнении в клетках уменьшается концентрация растворимых белков.

Углеводы. В целях биоиндикации может быть использовано наблюдение о росте содержания глюкозы и фруктозы в листьях гороха при действии газодымных выбросов.

Липиды. Газовые выбросы ведут к уменьшению содержания миристиновой, пальмитиновой и лауриновой кислот и к увеличению линолевой и линоленовой кислот в составе липидов.

Аккумуляция вредных веществ

Хорошим показателем загрязнения среды может служить повышенная концентрация поллютантов в клетках живых организмов. Так, обнаружена корреляция между содержанием свинца в листьях тисса и интенсивностью движения в городах.

Накопление ртути в перьях птиц позволило с помощью чучел проследить динамику загрязнений ртутью. Обнаружено, что с начала 40-х годов ХХ века содержание ртути в перьях фазана, куропаток, сапсана и других увеличилось в 10–20 раз, по сравнению с 1840–1940 гг.

Изменение размеров клеток

Показано, что при газодымном загрязнении:

       ·  увеличиваются клетки смоляных ходов у хвойных деревьев;

       ·  уменьшаются клетки эпидермиса листьев.

Нарушение физиологических процессов в клетке

Плазмолиз. В клетках растений под действием кислот и SO2 цитоплазма отслаивается от клеточной стенки.

Организменный уровень

Еще в древности некоторые виды растений использовали для поиска руд и других полезных ископаемых. Повреждения растений дымом были отмечены в середине XIX века вокруг содовых фабрик Англии и Бельгии.

Преимущества биоиндикации на этом уровне – это небольшие затраты труда и относительная дешевизна, поскольку не требуются специальные лаборатории и высокая квалификация персонала.

Растения

Морфологические изменения растений, используемые в биоиндикации:

1. Изменения окраски листьев (неспецифическая, реже специфическая, реакция на различные поллютанты):

— Хлороз – бледная окраска листьев между жилками. Отмечали при избытке в почве тяжелых металлов и при газодымовом загрязнении воздуха.

— Пожелтение участков листьев. Характерно для лиственных деревьев при засолении почвы хлоридами.

— Покраснение, связанное с накоплением антоциана. Возникает под действием сернистого газа.

— Побурение или побронзовение. Часто означает начальную стадию некротических повреждений.

— Листья как бы пропитаны водой (как при морозных повреждениях). Возникает под действием ряда окислителей, например, пероксиацетилнитрата.

— Серебристая окраска листьев. Возникает под действием озона на листьях табака.

2. Некрозы – отмирание участков ткани листа, их форма иногда специфична.

— Точечные и пятнистые. Серебристые пятна на листьях табака сорта Bel W3 возникают под действием озона.

— Межжилковые – некроз тканей между боковыми жилками 1 порядка.

Биоиндикаторы загрязнения водоёмов

Часто отмечаются при воздействии сернистого газа.

— Краевые. На листьях липы под влиянием соли (хлорида натрия), которой зимой посыпают городские улицы для таяния льда.

— "Рыбий скелет"– сочетание межжилковых и краевых некрозов.

—  Верхушечные некрозы. У однодольных покрытосеменных и хвойных растений. Например, хвоинки пихты и сосны после действия сернистого газа становятся на вершине бурыми, верхушки листьев гладиолусов после окуривания фтористым водородом становятся белыми.

3. Преждевременное увядание. Под действием этилена в теплицах не раскрываются цветки у гвоздики, увядают лепестки орхидей. Сернистый газ вызывает обратимое увядание листьев малины.

4. Дефолиация – опадание листвы. Обычно наблюдается после некрозов и хлорозов. Например, осыпание хвои у ели и сосны при газодымовом загрязнении воздуха, листьев лип и конских каштанов – от соли для таяния льда, крыжовника и смородины – под действием сернистого газа.

5. Изменения размеров органов обычно неспецифичны. Например, хвоя сосны вблизи заводов удобрений удлиняется от нитратов и укорачивается от сернистого газа. У ягодных кустарников дым вызывает уменьшение размеров листьев.

6. Изменения формы, количества и положения органов. Аномальную форму листьев отмечали после радиоактивного облучения. В результате локальных некрозов возникает вздувание или искривление листьев, сращение или расщепление отдельных органов, увеличение или уменьшение частей цветка.

7. Изменение жизненной формы растения. Кустовидная или подушечная форма роста свойственна деревьям, особенно липе, при сильном устойчивом загрязнении воздуха (HCl, SO2).

8. Изменение жизненности. В присутствии многих поллютантов бонитет деревьев понижается от 1–2 класса до 4–5. Обычно это сопровождается изреживанием кроны и уменьшением прироста. Изменения прироста неспецифичны, но широко применяются, так как чувствительнее, чем некрозы. Измеряют радиальный прирост стволов, прирост в длину побегов и листьев, корней, диаметр таллома лишайника.

9. Изменение плодовитости. Обнаружено у многих растений. Например, при действии поллютантов уменьшается образование плодовых тел у грибов, снижается продуктивность у черники и ели. Некоторые виды лишайников не образуют плодовых тел в сильно загрязненном воздухе, но способны размножаться вегетативно.

Биоиндикация на уровне биосферы

Некоторые примеры индикаторов глобальных изменений среды:

— "ползучая эвтрофикация". Присутствие в морской воде сточных вод все чаще индицируют красные и бурые приливы. Они возникают из-за вспышек численности одноклеточных водорослей: токсичных динофлагеллят (красные) и диатомовых (бурые);

— глобальное потепление климата. Обычным явлением становится "красный снег". Появляется в горах при повышенной инсоляции благодаря росту численности одноклеточных водорослей (в основном гемококков);

— фоновое загрязнение среды. Даже на заповедных территориях за последние 40 лет снизилось разнообразие и численность животных. Регулярное и повсеместное применение пестицидов привело к снижению численности почвенных членистоногих на полях за последние 30 лет в несколько раз.

Биоиндикация в различных средах
Классификация биоиндикационных показателей
Экономический механизм охраны природы
Гранулирование отходов
Экология Балхаша
Утилизация углеродсодержащих отходов
Безотходные технологии
Источники загрязнения водоемов
Процессы биологической очистки воды
Допустимые антропогенные нагрузки на окружающую среду
Виды негативного влияния на почву



Оставьте комментарий