Окислительное декарбоксилирование альфа кетоглутарата


Окислительное декарбоксилирование а-кетокислот. Механизм и регуляция окислительного декарбоксилирования пировиноградной кислоты. Роль витаминов.

Реакция окислительного декарбоксилирования карбоновых кислот заключается в отщеплении от молекулы карбоновой кислоты карбоксильной группы при нагревании до 260—300o С, в присутствии окислителя и хлорид-анионов, протекающем согласно следующей общей схеме: R-C(O)OH —> R-H + CO2

А-кетокислота – это аминокаслота, в которой амино-группа замещена на кето-группу в а-положении. В результате окислительного декарбоксилирования пирувата образуются ацетил- КоА, восстановленный НАД и диоксид углерода:

Эта схема представляет собой суммарный результат многостадийного процесса, который катализируется сложной ферментной системой — пируватдегидро- геназным комплексом. Комплекс содержит три фермента: пируватдекарбоксила- зу, ацетилтрансферазу и дегидрогеназу дигидролипоевой кислоты. Кроме того, в реакциях участвуют пять коферментов: НАД, ФАД, тиаминдифосфат, липоевая кислота и кофермент А (КоА).

Первую реакцию процесса катализирует пируватдекарбоксилаза (Е1, рис. 8.8). В результате действия пируватдекар- боксилазы (Е1) от пировиноградной кислоты отщепляется карбоксильная группа, а ацетильный остаток присоединяется к атому серы липоевой кислоты, т. е. получается ацетиллипоат-Е2.

Декарбоксилирование пирувата происходит при прямом участии тиаминди- фосфата (производное витамина В2 ): в ходе реакции к атому углерода тиазолового кольца.

Второй фермент комплекса — дигидролипоат-ацетилтрансфераза — катализирует перенос ацетильного остатка, соединенного с его (фермента 2) собственной простетической группой, на КоА; при этом получаются дигидролипоевая кислота (в составе ацетилтрансферазы) и ацетил-КоА.

Третий фермент — дегидрогеназа дигидролипоевой кислоты (ЕЗ). Акцептором водорода в реакции служит НАД. В результате дегидрирования дигидролипоевая кислота превращается в начальную форму — дегидролипоевую кислоту, и пируватдегидрогеназный комплекс может реагировать с очередной молекулой пирувата. Дигидролипоилдегидрогеназа содержит в качестве кофермента ФАД, который служит промежуточным акцептором водорода.

Таким образом, в окислительном декарбоксилировании пирувата участвует пять коферментов. Три из них — тиаминпирофосфат, липоевая кислота и ФАД — прочно связаны с ферментами комплекса, а два других — КоА и НАД — находятся в свободно растворенном состоянии и служат акцепторами главных конечных продуктов — ацетильного остатка и атомов водорода. Ацетильный остаток затем окисляется в цитратном цикле, а водород с НАДН поступает в цепь переноса электронов и протонов.

Предыдущая12345678910111213Следующая

Дата добавления: 2016-12-08; просмотров: 609;

ПОСМОТРЕТЬ ЕЩЕ:

Регуляция пируватдегидрогеназного комплекса — раздел Энергетика, Общие представления об обмене: катаболизм и анаболизм Регуляция Пируватдегидрогеназного Комплекса (Пдк) Имеет Важное Значение Для О…

Регуляция пируватдегидрогеназного комплекса (ПДК) имеет важное значение для обеспечения цикла трикарбоновых кислот "топливными" молекулами ацетил-КоА. Точная регуляция этого комплекса имеет важное значение в связи с невоз­можностью обратного преобразования ацетил-КоА в пируват, т.к. ферменты, не­обходимые для этого в организме человека отсутствуют.

Активность ПДК регулируется различными способами:

— доступностью субстратов,

— ингибированием продуктами реакции,

— аллостерическим путём,

— путём ковалентной модификации.

Регуляция активности пируватдегидрогеназного комплекса (ПДК)

Активность пируватдегидрогеназного комплекса увеличивается при повышении концентрации АДФ, внутриклеточного кальция, под влиянием гормонов: инсули­на и адреналина.

При повышении концентрации АДФ ПДК находится в нефосфорилированной ак­тивной форме. Этот эффект усиливается при повышении концентрации внутри­клеточного кальция, который активирует фосфатазу ПДК.

ОКИСЛИТЕЛЬНОЕ ДЕКАРБОКСИЛИРОВАНИЕ ПИРУВАТА

Такой механизм акти­вации ПДК особенно важен в мышцах и жировой ткани. Активация ПДК проис­ходит также под влиянием инсулина. Один из эффектов инсулина — повышение концентрации внутримитохондриального кальция, это приводит к активированию ПДК. В клетках миокарда ПДК активируется адреналином.

Фермент фосфатаза, активируясь ионами кальцияили инсулином, отщепляет фосфат и активирует пируватдегидрогеназу:

Таким образом, работа пируватдегидрогеназы подавляется при избыткев митохондрии (в клетке) АТФи НАДН, что позволяет снизить окисление пирувата и, следовательно, глюкозы, в случае когда энергии достаточно.

ЕслиАТФ мало или имеется влияние инсулина, то образуется ацетил-SКоА. Последний в зависимости от условий будет направляться либо в цикл трикарбоновых кислот с образованием энергии АТФ, либо на синтез холестерина и жирных кислот.

Сущность образования восстановленных НАДН и ФАДН2

Молекулы НАДН и ФАДН2, образуемые в реакциях окисления углеводов, жирных кислот, спиртов и аминокислот, далее поступают в митохондрии, где ферментами дыхательной цепи осуществляется процесс окислительного фосфорилирования.

Все темы данного раздела:

Современные представления о тканевом дыхании.
Живые организмы находятся в постоянной и неразрывной связи с окружающей средой. Эта связь осуществляется в процессе обмена веществ. Обмен веществ включает 3 этапа: — поступление веществ в

Таким образом, обмен веществ тесно связан с обменом энергии.
Биоэнергетика — раздел биохимии, который изучает биохимические механизмы, приводящие к генерации различных форм биологической энергии. Каждое орга­ническое соедине

Анаболических (эндергонических) реакций.
Свободную энергию (G) при стандартных условиях обозначают как ΔG0′. Изменение стандартной свободной энергии (ΔG0′) можно вычислить, зная константу равновесия (

Окислительно-восстановительные реакции. Окислительно-восстановительный потенциал.
Под окислением понимают отщепление электронов, а под восстановлением — присоединение электронов. Окисление донора электронов всегда сопровождается восстановлением акцептора электронов. Этот

Биологическое окисление.
В зависимости от вида использования энергии все организмы делятся на фототрофы (используют солнечную энергию непосредственно, это растения) и хемотр

Н-S-H -2H —— S (где S — субстрат)
2. Присоединение к веществу кислорода (одного атома или двух): S + O ——SO SO2 (где S — субстрат) Окисление органических ве

Окислительное декарбоксилирование пирувата
Окислительное декарбоксилирование пирувата происходит в матриксе митохондрий. Транспорт пирувата в митохондриальный матрикс через внутреннюю мембрану митохондрий осуществляется при участии специаль

Строение пируватдегидрогеназного комплекса
Процесс окислительного декарбоксилирования пирувата катализирует сложноорганизованный пируватдегидрогеназный комплекс, состоящий из 3 ферментов: — пируватдекарбокс

Пируватдегидрогеназный комплекс (ПДК) млекопитающих
Фермент Число мономеров Кофермент Витамин 1. Пируватдекарбоксилаза (пируватдегидрогеназа)

Окислительное декарбоксилирование пирувата
Превращение пирувата в ацетил-КоА Стадия I. Реакция декарбоксилирования пирувата. Значение декарбоксилирования пирувата в отношении извлечения энергии из мо­лекул

Окислительное фосфорилирование
Окислительное фосфорилирование – это многоэтапный процесс, происходящий во внутренней мембране митохондрий и заключающийся в окислении восстановленных эквивалентов

Принцип работы дыхательной цепи
В целом работа дыхательной цепи заключается в следующем: 1. Образующиеся в реакциях катаболизма НАДН и ФАДН2 передают атомы водорода (т.е. протоны водорода и электроны) на ферме

Переносчики электронов
1. Цитохромы с1, c, a, a3 (простетическая группа – гем) располагаются в различных участках дыхательной цепи, цитохром с – подвижный водорастворимый белок, перемещается

Комплекс. ФАД-зависимые дегидрогеназы
Данный комплекс как таковой не существует, его выделение условно. Он включает в себя ФАД-зависимые ферменты, расположенные на внутренней мембране – например, ацил-SКоА-деги

Комплекс. Цитохром с- оксидаза
В этом комплексе находятся цитохромы а и а3, в комплексе также имеется 2 иона меди. 1. c———-2e———aa3 (Сu+ <-> Сu

Комплекс. Протон-транспортирующая АТФ-синтаза
Пятый комплекс – это ферментАТФ-синтаза, состоящий из множества белковых цепей, подразделенных на две большие группы: одна группа формирует субъединицу F

Механизм окислительного фосфорилирования
На основании строения и функций компонентов дыхательной цепи предложен механизм окислительного фосфорилирования: 1. Ферменты дыхательной цепи расположены в строго определенной посл

Строение дыхательной цепи и механизм окислительного фосфорилирования
3. Здесь атомы водорода (от НАДН и ФАДН2) передают свои электроныв дыхательную ферментативную цепь, по которой электроны движутся (50-200 шт/сек) к своему конечному акце

Структурная организация цепи переноса электронов
Электроны, мигрирующие по дыхательной цепи, движутся по сложным траекто­риям. Особенность их движения состоит в петлеобразных движениях в пределах каждого из ферментативных комплексов дыхательной ц

Строение АТФ-синтазы и синтез АТФ
АТФ-синтаза (Н+-АТФ-аза) — интегральный белок внутренней мембраны митохондрий. Он расположен в непосредственной близости к дыхательной цепи. АТФ-синтаза состоит из 2 белковых комплексов,

Дыхательный контроль
Работа дыхательных ферментов регулируется с помощью эффекта, который получил название дыхательный контроль. Дыхательный контроль – это прямое влияние элек

Микросомальное окисление
Окисление может происходить не только в митохондриях, но и в микросомах и пероксисомах.В этих структурах тоже имеются цепи транспорта электронов (т.е. процесс окисления),

Окислительное декарбоксилирование α-кетоглутарата

1234Следующая ⇒

Образование цитрата

В реакции образования цитрата углеродный атом метильной труппы ацетил-КоА связывается с карбонильной группой оксалоацетата; одновременно расщепляется тиоэфирная связь и освобождается коэнзим A (ΔG0′ = -37,6 кДж/моль). Равновесие реакции в клетке сильно сдвинуто вправо, о чём свидетельствует отрицательная величина стандартной свободной энергии. Реакция сопровождается потерей большого количества энергии в виде теплоты.

Окислительное декарбоксилирование пирувата

Катализирует реакцию цитрат синтаза, фермент, локализованный в матриксе митохондрий.

Превращение цитрата в изоцитрат

Вторая реакция цитратного цикла — обратимое превращение цитрата в изоцитрат (рис. 6-24). Фермент, катализирующий эту реакцию, назван аконитазой по промежуточному продукту, цис-аконитовой кислоте, которая предположительно образуется в реакции. Однако это соединение не обнаруживается в свободном виде, так как не отделяется от активного центра фермента до завершения реакции.

Окислительное декарбоксилирование изоцитрата

Эту реакцию катализирует изоцитратдегидрогеназа. Существуют 2 формы изоцитратдегидрогеназы: одна содержит в качестве коферментa NAD+, вторая — NADP+. NAD-зависимый фермент локализован в митохондриях и участвует в ЦТК; NADP-зависимый фермент, присутствующий и в митохондриях, и в цитоплазме, играет иную метаболическую роль, В результате действия этого фермента на изоцитрат образуется α-кетоглутарат Реакция, катализируемая NAD-зависимой изоцитратдегидрогеназой, — самая медленная реакция цитратного цикла. АДФ — аллостерический активатор фермента.

Окислительное декарбоксилирование α-кетоглутарата

В этой реакции α-кетоглутарат подвергается окислительному декарбоксилированию с образованием в качестве конечных продуктов сук-цинил-КоА, СО2 и NADH + Н+. В результате этой реакции образуется сукцинил-КоА Реакцию катализирует α-кетоглутаратдегидрогеназный комплекс, который по структуре и функциям сходен с пируватдегидрогеназным комплексом (ПДК). Подобно ПДК, он состоит из 3 ферментов: α-кетоглутаратдекарбоксилазы, дигидролипоилтранссукцинилазы и дигидролипоилдегидрогеназы. Кроме того, в этот ферментный комплекс входят 5 коферментов: тиаминдифосфат, кофермент А, липоевая кислота, NAD+ и FAD. Существенное отличие этой ферментной системы от ПДК — то, что она не имеет сложного механизма регуляции, какой характерен для ПДК. В частности, в этом комплексе отсутствуют регуляторные субъединицы. Равновесие реакции окислительного декарбоксилирования α-кетоглутарата сильно сдвинуто в сторону образования сукцинил-КоА, и её можно считать однонаправленной.

1234Следующая ⇒

Дата добавления: 2017-01-28; просмотров: 859 | Нарушение авторских прав

Похожая информация:

Поиск на сайте:

Пируватдекарбоксилаза, карбокси-лиаза 2-оксокислот, фермент класса лиаз, принимает участие в анаэробном распаде углеводов в клетках некоторых микроорганизмов, например пивных дрожжах (см.

Брожение) и в тканях высших растений, катализируя реакцию неокислительного декарбоксилирования пировиноградной кислоты до уксусного альдегида: CH3COCOOH ® CH3CHO + CO2. Реакция протекает с участием тиаминпирофосфата в качестве кофермента и ионов Mg2+ в качестве кофактора.

Пируват окисляется до уксусной кислоты

П. декарбоксилирует также и др. a-оксокислоты (a-кетомасляную, a-кетовалериановую и др.), причём по мере удлинения углеродной цепи субстрата активность фермента снижается. Открыта в 1911 немецким биохимиком К. Нойбергом в дрожжах; в очищенном виде выделена из пивных дрожжей, зародышей пшеницы (молекулярная масса ~ 1 000 000) и др. растительных тканей.

  П. называется также один из компонентов пируватдегидрогеназы, который катализирует реакцию окислительного декарбоксилирования пировиноградной кислоты до ацетила (CH3CO—).

Л. С. Хайлова.

Механизм окислительного декарбоксилирования пирувата

12Следующая ⇒

Окислительное декарбоксилирование пировиноградной кислоты

Пировиноградная кислота связывает гликолиз с циклом трикарбоновых кислот. Пируват переносится из цитозоля в матрикс митохондрий с помощью переносчика по механизму симпорта с протоном. В матриксе митохондрий пируват превращается в ацетил-КоА. Этот процесс называется окислительное декарбоксилирование пирувата и катализируется пируватдегидрогеназным комплексом (пируватдегидрогеназной системой). Высокая концентрация пируватдегидрогеназного комплекса обнаружена в сердечной мышце и почках.

Пируватдегидрогеназный комплекс является классическим мультиферментным комплексом, в котором промежуточные продукты остаются связанными на поверхности молекулы фермента до образования конечного продукта.

В состав пируватдегидрогеназного комплекса входит 3 фермента и 5 кофакторов. I-й фермент – пируватдегидрогеназа содержит кофактор тиаминпирофосфат (производное витамина В1); II-й фермент – дигидролипоилтрансацетилаза содержит кофакторы липоевую кислоту (ЛК, 6,8-дитиооктановая кислота) и кофермент А (НS-КоА), причем остаток липоевой кислоты присоединен к апоферменту путем образования амидной связи между карбоксильной группой ЛК и ε-аминогруппой лизина белка (образуется длинная «рука», состоящая из 13 атомов углерода); III-й фермент — дигидролипоилдегидрогеназа содержит кофакторы ФАД и НАД+.

Механизм окислительного декарбоксилирования пирувата

I этап. Пируват взаимодействует с кофактором пируватдегидрогеназы тиаминпирофосфатом. Основную роль играет второй углеродный атом тиазольного кольца ТПФ, который легко теряет протон, превращаясь в карбанион. Карбанион атакует частично положительно заряженный α-углеродный атом пирувата с возникновением связи С−С. Сильно электрофильный атом азота в карбоксиэтил-ТПФ способствует его декарбоксилированию с образованием гидроксиэтил-ТПФ.

II этап. В следующей реакции, катализируемой дигидролипоилтрансацетилазой, гидроксиэтил-ТПФ взаимодействует с липоевой кислотой. Происходит перенос гидроксиэтильной группы на один из атомов серы ЛК. При этом гидроксиэтильная группа окисляется в ацетильную. В процессе окисления гидроксиэтильной группы и восстановления SH-группы ЛК возникает макроэргическая связь. Затем ацетильный остаток переносится на второй кофермент дигидролипоилтрансацетилазы – HS-KoA, а ЛК полностью восстанавливается. Образованный ацетил-КоА отделяется от полиферментного комплекса.

III этап. Восстановленная форма ЛК окисляется дигидролипоилдегидрогеназой.

3. Регуляция пируватдегидрогеназного комплекса.Превращение пирувата в ацетил-КоА – процесс необратимый. Поэтому синтез глюкозы из ацетил-КоА невозможен. Обычно ацетил-КоА далее превращается 2-мя путями: 1) ацетильная группа ацетил-КоА окисляется до СО2 и Н2О через ЦТК и сопряженные цепи переноса электронов с выделением и запасанием энергии в виде АТФ; 2) используется для синтеза кетоновых тел, холестерола и жирных кислот.

Пируватдегидрогеназный комплекс регулируется методом фосфорилирования-дефосфорилирования. Повышение величин отношений НАДН/НАД+, ацетил-КоА/КоА или АТФ/АДФ способствует фосфорилированию фермента протеинкиназой и дезактивации комплекса. Следовательно, пируватдегидрогеназный комплекс инактивируется, если клетка богата энергией и биосинтетическими предшественниками.

Пируват и АДФ, наоборот, активируют пируватдегидрогеназный комплекс посредством ингибирования протеинкиназы.

Вазопрессин активирует пируватдегидрогеназный комплекс путем повышения концентрации ионов кальция в митохондриях, которые активируют протеинфосфатазу (дефосфорилирование фермента). Инсулин также усиливает превращение пирувата в ацетил-КоА через дефосфорилирование пируватдегидрогеназного комплекса.

Цикл трикарбоновых кислот

Вторым компонентом общего пути катаболизма является ЦТК. Этот цикл был открыт в 1937 г. Кребсом и Джонсоном. В 1948 г. Кеннеди и Ленинджер доказали, что ферменты ЦТК локализованы в матриксе митохондрий.

4.1. Химизм цикла трикарбоновых кислот.Свободную уксусную кислоту невозможно окислить путем дегидрирования. Поэтому она в активной форме (ацетил-КоА) предварительно связывается с оксалоацетатом (ЩУК, щавелевоуксусной кислотой), в результате чего образуется цитрат.

1. Ацетил-КоА соединяется с оксалоацетатом в реакции альдольной конденсации, катализируемой цитратсинтазой. Образуется цитрил-КоА. Цитрил-КоА при участии воды гидролизуется до цитрата и НS-КоА.

2. Аконитат-гидратаза(аконитаза) катализирует превращение цитрата в изоцитрат через стадию цис-аконитовой кислоты. Аконитаза по механизму действия одновременно гидратаза и изомераза.

3. Изоцитратдегидрогеназа катализирует дегидрирование изолимонной кислоты в оксалосукцинат (щавелевоянтарную кислоту), которая затем декарбоксилируется в 2-оксоглутарат (α-кетоглутарат). Коферментом является НАД+ (в митохондриях) и НАДФ+ (в цитозоле и митохондриях).

4. 2-Оксоглутаратдегидрогеназный комплекс (α-кетоглутаратдегидрогеназный комплекс) катализирует окислительное декарбоксилирование 2-оксоглутарата в сукцинил-КоА. Мультиферментный 2-оксоглутаратдегидрогеназный комплекс похож на пируватдегидрогеназный комплекс и процесс протекает аналогично окислительному декарбоксилированию пирувата.

5. Сукцинилтиокиназа катализирует расщепление сукцинил-КоА на янтарную кислоту и кофермент А. Энергия расщепления сукцинил-КоА накапливается в виде гуанозинтрифосфата (ГТФ). В сопряженной реакции перефосфорилирования АДФ фосфорилируется в АТФ, а освобождающиеся молекулы ГДФ могут вновь фосфорилироваться (субстратное фосфорилирование). У растений фермент специфичен к АДФ и АТФ.

6. Сукцинатдегидрогеназа катализирует превращение сукцината в фумаровую кислоту. Фермент стереоспецифичен, является интегральным белком, так как вмонтирован во внутреннюю мембрану митохондрий и в качестве простетических групп содержит ФАД и железосерные белки. ФАДН2 не отделяется от фермента, а два электрона далее передаются на кофермент Q цепи переноса электронов внутренней мембраны митохондрий.

7.Фумарат-гидратаза (фумараза) катализирует превращение фумаровой кислоты в яблочную (малат) с участием воды. Фермент стереоспецифичен, образует только L-малат.

8.Малатдегидрогеназа катализирует окисление яблочной кислоты в оксалоацетат. Кофермент малатдегидрогеназы — НАД+. Далее оксалоацетат вновь конденсируется с ацетил-КоА и цикл повторяется.

4.2. Биологическое значение и регуляция цикла трикарбоновых кислот.Цикл трикарбоновых кислот – компонент общего пути катаболизма, в котором происходит окисление топливных молекул углеводов, жирных кислот и аминокислот. Большинство топливных молекул поступают в ЦТК в виде ацетил-КоА (рис. 1). Все реакции ЦТК протекают согласованно в одном направлении. Суммарная величина DG0¢ = -40 кДж/моль.

В среде врачей давно бытует крылатая фраза «Жиры горят в пламени углеводов». Ее надо понимать как окисление ацетил-КоА, основным источником которого является β-окисление жирных кислот, после конденсации с оксалоацетатом, образуемой, главным образом, из углеводов (при карбоксилировании пирувата). При нарушениях обмена углеводов или голодании создается дефицит оксалоацетата, ведущий к уменьшению окисления ацетил-КоА в ЦТК.

Рис.1. Роль ЦТК в клеточном дыхании. 1 стадия (ЦТК) извлечение из молекулы ацетил-КоА 8 электронов; 2 стадия (цепи переноса электронов) восстановление двух молекул кислорода и формирование протонного градиента (~36 Н+); 3 стадия (АТФ-синтаза) использование энергии протонного градиента для образования АТФ (~9 АТФ) (Berg J.M., Tymoczko J.L., Stryer L. Biochemistry. N-Y: W.H.Freeman and Company, 2002).

Основная метаболическая роль ЦТК может быть представлена в виде двух процессов: 1) серия окислительно-восстановительных реакций, в результате которых ацетильная группа окисляется до двух молекул СО2; 2) четырехкратное дегидрирование, ведущее к образованию 3 молекул НАДН+Н+ и 1 молекулы ФАДН2. Кислород необходим для функционирования ЦТК опосредованно как акцептор электронов в конце цепей переноса электронов и для регенерации НАД+ и ФАД.

Основное значение для регуляции ЦТК имеет синтез и гидролиз АТФ.

1. Изоцитратдегидрогеназа аллостерически активируется АДФ путем повышения сродства фермента к субстрату. НАДН ингибирует этот фермент, замещая НАД+. АТФ также ингибирует изоцитратдегидрогеназу. Важно, что превращения метаболитов в ЦТК требуют на нескольких стадиях НАД+ и ФАД, количество которых достаточно только в условиях низкого энергетического заряда.

2. Активность 2-оксоглутаратдегидрогеназного (α-кетоглутаратдегидрогеназного) комплекса регулируется аналогично регуляции пируватдегидрогеназного комплекса. Этот комплекс ингибируется сукцинил-КоА и НАДН (конечными продуктами превращений, катализируемых 2-оксоглутаратдегидрогеназным комплексом). Кроме того, 2-оксоглуттаратдегидрогеназный комплекс ингибируется высоким энергетическим зарядом клетки. Итак, скорость превращений в ЦТК уменьшается при достаточной обеспеченности клетки АТФ (рис. 11.2). У ряда бактерий цитратсинтаза аллостерически ингибируется АТФ посредством повышения Км для ацетил-КоА.

Схема регуляции общего пути катаболизма представлена на рисунке 2.

Рис.

ОКИСЛИТЕЛЬНОЕ ДЕКАРБОКСИЛИРОВАНИЕ ПИРУВАТА

2. Регуляция общего пути катаболизма. Основными молекулами, регулирующими функционирование ЦТК являются АТФ и НАДН. Основными пунктами регуляции являются изоцитратдегидрогеназа и 2-оксоглутаратдегидрогеназный комплекс.

12Следующая ⇒

Дата добавления: 2016-11-12; просмотров: 936 | Нарушение авторских прав

Похожая информация:

Поиск на сайте:

Регуляция на уровне ПДК имеет важное значение для обеспечения цитратного цикла "топливными" молекулами ацетил-КоА.

Образование ацетил-КоА из пирувата — необратимый ключевой этап метаболизма. Животные не способны к превращению ацетил-КоА в глюкозу. Активность пируватдегидрогеназного комплекса регулируется различными способами: доступностью субстратов, ингибированием продуктами реакции, аллостерически и путём ковалентной модификации.

Ковалентная модификация ПДК осуществляется фосфорилированием и дефосфорилированием. В состав ПДК входят 2 регуляторных субъединицы. Одна из них, киназа ПДК, фосфорилирует ПДК в определённых участках по остаткам серина. При фосфорилировании ПДК инактивируется. Другая регуляторная субъединица, фосфатаза, дефосфорилирует фермент, превращая его в активную форму (рис. 6-26).

При повышении концентрации АДФ ПДК находится в нефосфорилированной активной форме. Этот эффект усиливается в некоторых клетках при повышении концентрации внутриклеточного Са2+, который активирует фосфатазу ПДК. Такой механизм активации ПДК особенно важен в мышцах и жировой ткани.

Продукты пируватдегидрогеназной реакции (ацетил-КоА и NADH) аллостерически активируют киназу ПДК. Активированная киназа фос-форилирует и инактивирует ПДК. Таким образом, при накоплении NADH и ацетил-КоА тормозится превращение пирувата в ацетил-КоА. Такая ситуация создаётся, например, в печени при голодании: из жировых депо в печень поступают жирные кислоты, из которых образуется ацетил-КоА. В присутствии высокомолекулярных жирных кислот ингибирование ПДК усиливается. Пируват при этом не окисляется и может быть использован для синтеза глюкозы (см. раздел 7).

Пируват аллостерически активирует нефосфорилированную форму ПДК, действуя согласованно с другими субстратами — NAD+ и КоА. Активация ПДК происходит также под влиянием инсулина. Один из эффектов инсулина — повышение концентрации внутримитохондриального Са2+. При повышении концентрации Са2+ ПДК активируется (см. рис. 6-26). Этот механизм особенно важен в жировой ткани, где ацетил-КоА необходим для синтеза жирных кислот (см. раздел 8). В клетках миокарда ПДК активируется адреналином, однако это влияние адреналина не связано с изменением концентрации цАМФ.

53. Цикл лимонной кислоты: последовательность реакций и характеристика ферментов. Роль цикла в метаболизме.

Цикл лимонной кислоты (цитратный цикл, цикл Кребса, цикл трикарбоновых кислот, ЦТК) — заключительный этап катаболизма, в котором углерод ацетильного остатка ацетил-КоА окисляется до 2 молекул СО2. Атомы водорода, освобождающиеся в окислительно-восстановительных реакциях, доставляются в ЦПЭ при участии NAD- и FAD-зависимых дегидрогеназ, в результате чего происходят синтез воды и окислительное фосфорилирование АДФ. Связь между атомами углерода в ацетил-КоА устойчива к окислению. В условиях организма окисление ацетильного остатка происходит в несколько этапов, образующих циклический процесс из 8 реакций.

Последовательность реакций цитратного цикла

Регуляция цитратного цикла. В большинстве случаев скорость реакций в метаболических циклах определяется их начальными реакциями. В ЦТК важнейшая регуляторная реакция — образование цитрата из оксалоацетата и ацетил-КоА, катализируемая цитратсинтазой. Эта реакция ускоряется при повышении концентрации оксалоацетата — субстрата реакции и тормозится продуктом реакции — цитратом. Когда отношение NADH/NAD+ снижается, скорость окисления маната в оксалоацетат возрастает. Повышение концентрации оксалоацетата ускоряет цитратсинтазную реакцию. Скорость реакции снижается при повышении концентрации АТФ, сукцинил-КоА и длинноцепочечных жирных кислот. Однако точный механизм влияния этих метаболитов на цитратсинтазу недостаточно ясен (рис. 6-27).

Изоцитратдегидрогеназа, олигомерный фермент, состоит из 8 субъединиц.

Окислительное декарбоксилирование изоцитрата

Присоединение изоцитрата к первой субъединице вызывает кооперативное изменение конформации других, увеличивая скорость присоединения субстрата. Фермент аллостерически активируется АДФ и Са2+, которые присоединяются к ферменту в разных аллостерических центрах. В присутствии АДФ конформация всех субъединиц меняется таким образом, что связывание изоцитрата происходит значительно быстрее. Таким образом, при концентрации изоцитрата, которая существует в митохондриальном матриксе, небольшие изменения концентрации АДФ могут вызвать значительное изменение скорости реакции. Увеличение активности изоцитратдегидрогеназы снижает концентрацию цитрата, что, в свою очередь, уменьшает ингибирование цитратсинтазы продуктом реакции. При повышении концентрации NADH активность фермента снижается.

α-Кетоглутаратдегидрогеназный комплекс, имеющий сходное строение с пируватдегидрогеназным, в отличие от последнего, не имеет в своём составе регуляторных субъединиц. Главный механизм регуляции α-кетоглутаратдегидрогеназного комплекса — ингибирование реакции NADH и сукцинил-КоА.

α-Кетоглутаратдегидрогеназный комплекс, как и Изоцитратдегидрогеназа, активируется Са2+, а при повышении концентрации АТФ скорости обеих реакций снижаются.

В регуляции цитратного цикла существует множество дополнительных механизмов, обеспечивающих необходимый уровень метаболитов и их участие в других метаболических путях.

Компартментализация ферментов, участвующих в реакциях окислительного декарбоксилирования пирувата и цикла лимонной кислоты, играет важную роль в регуляции этих процессов.

Внутренняя мембрана митохондрий непроницаема для анионов и катионов, в том числе и для промежуточных продуктов цитратного цикла, которые могут быть перенесены через мембрану только при участии специальных белков. Поэтому ферменты цитратного цикла имеют больше возможностей для взаимодействия с продуктами предыдущих реакций, чем в случае свободного удаления этих продуктов из митохондрий.

Доступность субстратов возрастает также в результате образования ферментных комплексов. Малатдегидрогеназа и цитратсинтаза образуют непрочные комплексы, в которых цитратсинтаза может использовать оксалоацетат, непосредственно образующийся малатдегидрогеназой.

В ПДК и α-кетоглутаратдегидрогеназном комплексе субстраты непосредственно передаются от одного фермента к другому: только транса-цилаза может взаимодействовать с промежуточным продуктом, связанным с ТДФ, а дигидролипоилдегидрогеназа- с дигидролипоевой кислотой.

Рис. 6-27. Регуляция общего пути катаболизма. 1 — ПДК активируется пируватом, NAD+, КоА; ингибируется NADH и ацетил-КоА; 2 — цитратсинтаза (реакция ускоряется при повышении концентрации оксалоацетата и замедляется при повышении концентрации цитрата, NADH, АТФ и сукцинил-КоА); 3 — изоцитратдегидрогеназа аллостерически активируется АДФ, ионами кальция, ингибируется NADH; 4 — α-кетоглутаратдегидрогеназный комплекс ингибируется NADH, АТФ и сукцинил-КоА, а активируется ионами кальция.

NAD+, NADH, КоА, ацетил-КоА и сукцинил-КоА не имеют транспортных белков в мембране митохондрий. Поэтому эти соединения не могут пройти через митохондриальную мембрану.

Накопление ацил-КоА производных, таких как ацетил-КоА или сукцинил-КоА, в митохон-дриальном матриксе ингибирует другие реакции, для которых необходим КоА.

Тесная связь цитратного цикла и ЦГКЭ поддерживается благодаря использованию в этих реакциях общего фонда NAD+ и NADH.

54. Цикл лимонной кислоты, схема процесса. Связь цикла с цепью переноса электронов и протонов. Регуляция цикла лимонной кислоты. Анаболические и анаплеротические функции цитратного цикла.

Связь окислительного декарбоксилирования
пирувата с ЦПЭ

Окислительное декарбоксилирование пирувата сопровождается образованием NADH, поставляющим электроны в дыхательную цепь и обеспечивающим синтез 3 молей АТФ на 1 моль пирувата путём окислительного фосфорилирования.

Так как отношения ДДФ/АТФ и NADH/NAD+ в клетке относительно постоянны, ускорение утилизации АТФ приводит к повышению концентрации АДФ и ускорению окисления NADH в дыхательной цепи. Повышение концентрации NAD+, в свою очередь, стимулирует окислительное декарбоксилирование пирувата. Напротив, повышение концентрации АТФ и NADH снижает скорость этого процесса. Таким образом, изменения отношений АДФ/АТФ и NADH/ NAD+ — важнейшие сигналы, отражающие энергетические потребности клетки и регулирующие скорость окислительного декарбоксилирования пирувата. Каталитическая активность пируват-дегидрогеназного комплекса снижается, когда в клетках имеется достаточно "топлива" в виде жирных кислот и ацетил-КоА.

Дата публикования: 2015-11-01; Прочитано: 404 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.002 с)…

Оставьте комментарий