Изменчивость ее формы

Основные формы изменчивости

Различают две основные формы изменчивости организмов — модификационную и мутационную.
Модификационной называют изменчивость, которая возникает у организмов при их росте и развитии в разных условиях среды и которая не связана с различиями генотипа. Так, при разном кормлении поросята от одной чистопородной свиноматки будут значительно отличаться друг от друга по живой массе. Растения, выращенные из чистосортных семян пшеницы, неодинаковы по своей продуктивности в зависимости от условий агротехники, климатических факторов, места произрастания и т.д. В этих и многочисленных аналогичных случаях одинаковые генотипы могут реализоваться в достаточно различных фенотипах. В этой связи в генетике возникло понятие — норма реакции: генотип определяет не готовый признак, а способность давать тот или иной фенотип при тех или иных условиях среды. Таким образом, норма реакции фиксирует возможные границы модификационной изменчивости для того или иного признака.
Для разных свойств и признаков границы, определяемые нормой реакции, неодинаковы. К числу признаков, испытывающих значительные модификационные изменения в связи с изменением условий, относятся такие, как семенная продуктивность злаков, величина удоя у крупного рогатого скота, живая масса животных, число, размеры листьев многих растений и т. д. В то же время есть признаки, мало варьирующие при изменении условий. У животных к ним относятся масть, наличие или отсутствие рогов и ряд других; у растений — окраска цветков и плодов, остистость и опушенность колоса и др.
Управление модификационной изменчивостью при помощи агротехнических и зоотехнических мероприятий — важное условие повышения продуктивности сельскохозяйственных растений и животных.

Мутационнойназывается изменчивость самого генотипа, не связанная со скрещиваниями. Мутации могут быть двух типов: хромосомные, когда изменяется набор или структура хромосом, и генные, когда происходит изменение гена.
Среди хромосомных мутаций наибольшее практическое значение имеет полиплоидия — кратное увеличение всего набора хромосом. Полиплоидия распространена главным образом среди растений. Так, если в клетках растений вместо диплоидного набора хромосом будет удвоенный — тетраплоидный набор (2n Х 2 = 4n), то по целому ряду свойств такие полиплоидные растения будут выгодно отличаться от диплоидных. Как правило, это более мощные растения. У них крупнее цветки, плоды и семена, в запасающих органах (стеблях, клубнях) накапливается больше питательных веществ. Особенно перспективна полиплоидия для растений, у которых используются вегетативные части, так как количество семян у многих полиплоидов меньше, чем у исходных диплоидных форм. Искусственное получение полиплоидов основано на применении ряда химических веществ, которые нарушают нормальный ход деления клетки.

В этом случае хромосомы ядра удваиваются (как в обычном митозе), но разделения цитоплазмы не происходит. В результате возникает клетка с удвоенным числом хромосом. Такая клетка и может стать началом будущего полиплоидного растения. Изменения, характеризующие полиплоидов, стойко передаются по наследству при вегетативном размножении, а при определенных условиях — и при половом размножении.

Генные мутации — важнейший источник наследственной изменчивости организмов. По современным представлениям, ген — участок молекулы ДНК, в котором запрограммирован синтез одной молекулы белка. Если в этом участке молекулы ДНК один или несколько нуклеотидов окажутся замещенными на другие нуклеотиды, то это может привести к синтезу другого белка. Тем самым будет изменен, а часто и нарушен обмен веществ в клетке, что может сказаться на процессах роста и развития организма. Так, мутационные изменения в гене (в структуре участка молекулы ДНК) могут стать причиной изменения у организма того или иного свойства или признака. А так как мутировавший ген воспроизводит себя в ряду поколений и дальше, то генные мутации оказываются наследственными.

В естественных условиях мутации одного и того же гена очень редки. Но так как число генов в одном генотипе огромно, то и суммарное количество мутаций в пределах одного вида весьма значительно. Только большая часть их может находиться в скрытом, рецессивном состоянии. Искусственно частоту мутаций можно намного увеличить. Достигается это путем различных химических, радиационных и температурных воздействий на организм (или его половые клетки, споры, семена). Такие воздействия прежде всего сказываются на обмене веществ в клетке, а затем и на процессе саморепродукции ДНК. Возникает несколько измененная в какой-то части молекула ДНК — происходит генная мутация.
К настоящему времени у разных растений и животных получено и описано очень большое количество генных мутаций. Многие из них, необратимо нарушая обмен веществ и энергии
в клетке, приводят к тем или иным повреждениям организма, а то и к его гибели. Другие же мутации, напротив, дают фе-нотипическое проявление, полезное для организма в естественных условиях или ценное с хозяйственной точки зрения. Через естественный отбор в природе и через искусственный отбор в селекции вредные мутации отбрасываются, а полезные сохраняются и накапливаются.

Кроме мутаций, важный источник наследственной изменчивости — скрещивания. Благодаря скрещиванию могут появляться признаки, которых не было у исходных форм. Примером может служить розовая окраска цветков у ночной красавицы, возникшая при скрещивании красноцветковых растений с бело-цветковыми. Кроме того, скрещивание часто позволяет в одном организме соединить признаки, которыми обладают разные породы и сорта.

БИЛЕТ 55

Дата добавления: 2016-12-06; просмотров: 875 | Нарушение авторских прав

Похожая информация:

Поиск на сайте:

Характеристика модификационной изменчивости.

Генетика изучает не только наследственность, но и изменчивость организмов. Изменчивостью называют способность живых организмов приобретать новые признаки и свойства. Благодаря изменчивости, организмы могут приспосабливаться к изменяющимся условиям среды обитания.

Различают два типа изменчивости: наследственную, или генотипическую и ненаследственную, или фенотипическую, — изменчивость, при которой изменений генотипа не происходит.

Большую роль в формировании признаков организмов играет среда его обитания. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. их фенотип.

Изменчивость организмов, возникающая под влиянием факторов внешней среды и не затрагивающая генотипа, называется модификационной.

Модификационная изменчивость называется фенотипической, так как под влияние внешней среды происходит изменение фенотипа, генотип остается неизменным. Классическим примером изменчивости признаков под действием факторов внешней среды является разнолистность у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, — округлую, а находящиеся в воздушной среде, — стреловидные. Если же все растение оказывается полностью погруженным в воду, его листья только лентовидные. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) возникает загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна. Если же человек лишен действия ультрафиолетовых лучей, изменение окраски кожи у него не происходит.

Модификационная изменчивость носит групповой характер, то есть все особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки. Например, если сосуд с эвгленами зелеными поместить в темноту, то все они утратят зеленую окраску, если же вновь выставить на свет — все опять станут зелеными.

Модификационная изменчивость является определенной, то есть всегда соответствует факторам, которые ее вызывают. Так, ультрафиолетовые лучи изменяют окраску кожи человека (так как усиливается синтез пигмента), но не изменяют пропорций тела, а усиленные физические нагрузки влияют на степень развития мышц, а не на цвет кожи.

Однако не следует забывать, что развитие любого признака определяется, прежде всего, генотипом. Вместе с тем, гены определяют возможность развития признака, а его появление и степень выраженности во многом определяется условиями среды. Так, зеленая окраска растений зависит не только от генов, контролирующих синтез хлорофилла, но и от наличия света. При отсутствии света хлорофилл не синтезируется.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Даже в случае нормального развития признака степень его выраженности различна. Так, на поле пшеницы можно обнаружить растения с крупными колосьями (20 см и более) и очень мелкими (3-4 см). Это объясняется тем, что генотип определяет определенные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции. Как правило, количественные признаки (урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, нежели качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови).

Знание нормы реакции имеет большое значение для практики сельского хозяйства

Модификационная изменчивость многих признаков растений, животных и человека подчиняется общим закономерностям. Эти закономерности выявляются на основании анализа проявления признака у группы особей. Каждое конкретное значение изучаемого признака называют вариантой и обозначают буквой v. Частота встречаемости отдельных вариант обозначается буквой p. При изучении изменчивости признака в выборочной совокупности составляется вариационный ряд, в котором особи располагаются по возрастанию показателя изучаемого признака. На основании вариационного ряда строится вариационная кривая — графическое отображение частоты встречаемости каждой варианты (рис. 8).

Например, если взять 100 колосьев пшеницы (n) и подсчитать число колосков в колосе, то это количество будет от 14 до 20 — это численное значение вариант (v).

Вариационный ряд: v = 14 15 16 17 18 19 20

Рис. 8. Вариационная кривая.

Частота встречаемости каждой варианты p = 2 7 22 32 24 8 5

Легко посчитать и среднее значение данного признака. Для этого используют формулу:

å (vּp)

М = n

Где М — средняя величина признака, в числителе сумма произведений вариант на их частоту встречаемости, в знаменателе — количество вариант. Для данного признака среднее значение равно 17,13.

Знание закономерностей модификационной изменчивости имеет большое практическое значение, поскольку позволяет предвидеть и заранее планировать степень выраженности многих признаков организмов в зависимости от условий внешней среды.

Итак, необходимо еще раз подчеркнуть:

норма реакции организма определяется генотипом;

различные признаки отличаются пределами изменчивости под влиянием внешних условий;

модификационная изменчивость в естественных условиях носит приспособительный характер;

Дата добавления: 2017-08-01; просмотров: 371;

ПОСМОТРЕТЬ ЕЩЕ:

Модификационная изменчивость. Модификационная изменчивость — это изменения признаков организмов, не обусловленные изменениями генотипа и возникающие под влиянием факторов внешней среды

Модификационная изменчивость — это изменения признаков организмов, не обусловленные изменениями генотипа и возникающие под влиянием факторов внешней среды. Среда обитания играет большую роль в формировании признаков организмов. Каждый организм развивается и обитает в определенной среде, испытывая на себе действие ее факторов, способных изменять морфологические и физиологические свойства организмов, т.е. их фенотип.

Примером изменчивости признаков под действием факторов внешней среды является разная форма листьев у стрелолиста: погруженные в воду листья имеют лентовидную форму, листья, плавающие на поверхности воды, — округлую, а находящиеся в воздушной среде, — стреловидную. Под действием ультрафиолетовых лучей у людей (если они не альбиносы) появляется загар в результате накопления в коже меланина, причем у разных людей интенсивность окраски кожи различна.

Модификационная изменчивость характеризуется следующими основными свойствами: 1) ненаследуемость; 2) групповой характер изменений (особи одного вида, помещенные в одинаковые условия, приобретают сходные признаки); 3) соответствие изменений действию фактора среды; 4) зависимость пределов изменчивости от генотипа.

Несмотря на то, что под влиянием условий внешней среды признаки могут изменяться, эта изменчивость не беспредельна. Это объясняется тем, что генотип определяет конкретные границы, в пределах которых может происходить изменение признака. Степень варьирования признака, или пределы модификационной изменчивости, называют нормой реакции. Норма реакции выражается в совокупности фенотипов организмов, формирующихся на основе определенного генотипа под влиянием различных факторов среды. Как правило, количественные признаки (высота растений, урожайность, размер листьев, удойность коров, яйценоскость кур) имеют более широкую норму реакции, то есть могут изменяться в широких пределах, чем качественные признаки (цвет шерсти, жирность молока, строение цветка, группа крови).

Знание нормы реакции имеет большое значение для практики сельского хозяйства.

Модификационная изменчивость многих признаков растений, животных и человека подчиняется общим закономерностям. Эти закономерности выявляются на основании анализа проявления признака у группы особей (n). Степень выраженности изучаемого признака у членов выборочной совокупности различна. Каждое конкретное значение изучаемого признака называют вариантой и обозначают буквой v. Частота встречаемости отдельных вариант обозначается буквой p. При изучении изменчивости признака в выборочной совокупности составляется вариационный ряд, в котором особи располагаются по возрастанию показателя изучаемого признака.

Например, если взять 100 колосьев пшеницы (n = 100), подсчитать число колосков в колосе (v) и число колосьев с данным количеством колосков, то вариационный ряд будет выглядеть следующим образом.

Варианта (v)
Частота встречаемости (p)

Дата добавления: 2016-06-24; просмотров: 249;

ПОСМОТРЕТЬ ЕЩЕ:

Формы изменчивости

Изменчивость — это возникновение индивидуальных различий. На основе изменчивости организмов появляется генетическое разнообразие форм, которые в результате действия естественного отбора преобразуются в новые подвиды и виды. Различают изменчивость модификационную, или фенотипическую, и мутационную, или генотипическую.

Модификационная изменчивость

Модификационная изменчивость не вызывает изменений генотипа, она связана с реакцией данного, одного и того же генотипа на изменение внешней среды: в оптимальных условиях выявляется максимум возможностей, присущих данному генотипу. Так, продуктивность беспородных животных в условиях улучшенного содержания и ухода повышается (надои молока, нагул мяса). В этом случае все особи с одинаковым генотипом отвечают на внешние условия одинаково (Ч. Дарвин этот тип изменчивости назвал определенной изменчивостью). Однако другой признак — жирность молока — слабо подвержен изменениям условий среды, а масть животного — еще более устойчивый признак. Модификационная изменчивость обычно колеблется в определенных пределах. Степень варьирования признака у организма, то есть пределы модификационной изменчивости, называется нормой реакции. Широкая норма реакции свойственна таким признакам, как удои молока, размеры листьев, окраска у некоторых бабочек; узкая норма реакции — жирности молока, яйценоскости у кур, интенсивности окраски венчиков у цветков и другое. Фенотип формируется в результате взаимодействий генотипа и факторов среды. Фенотипические признаки не передаются от родителей потомкам, наследуется лишь норма реакции, то есть характер реагирования на изменение окружающих условий. У гетерозиготных организмов при изменении условий среды можно вызвать различные проявления данного признака.

Свойства модификаций:

1) ненаследуемость;

2) групповой характер изменений;

3) соотнесение изменений действию определенного фактора среды;

4) обусловленность пределов изменчивости генотипом.

Генотипическая изменчивость

Генотипическая изменчивость подразделяется на мутационную и комбинативную. Мутациями называются скачкообразные и устойчивые изменения единиц наследственности — генов, влекущие за собой изменения наследственных признаков. Термин “мутация” был впервые введен де Фризом. Мутации обязательно вызывают изменения генотипа, которые наследуются потомством и не связаны со скрещиванием и рекомбинацией генов.

Классификация мутаций. Мутации можно объединять, в группы — классифицировать по характеру проявления, по месту или, по уровню их возникновения. Мутации по характеру проявления бывают доминантными и рецессивными. Мутации нередко понижают жизнеспособность или плодовитость. Мутации, резко снижающие жизнеспособность, частично или полностью останавливающие развитие, называют полулетальными а несовместимые с жизнью — летальными. Мутации подразделяют по месту их возникновения. Мутация, возникшая в половых клетках, не влияет на признаки данного организма, а проявляется только в следующем поколении. Такие мутации называют генеративными. Если изменяются гены в соматических клетках, такие мутации проявляются у данного организма и не передаются потомству при половом размножении. Но при бесполом размножении, если организм развивается из клетки или группы клеток, имеющих изменившийся — мутировавший ген, мутации могут передаваться потомству. Такие мутации называют соматическими.

Мутации классифицируют по уровню их возникновения. Существуют хромосомные и генные мутации. К мутациям относится также изменение кариотипа ( изменение числа хромосом). Полиплоидия — увеличение числа хромосом, кратное гаплоидному набору. В соответствии с этим у растений различают триплоиды (Зп), тетраплоиды (4п) и т.д. В растениеводстве известно более 500 полиплоидов (сахарная свекла, виноград, гречиха, мята, редис, лук и др.). Все они выделяются большой вегетативной массой и имеют большую хозяйственную ценность.

Большое многообразие полиплоидов наблюдается в цветоводстве: если одна исходная форма в гаплоидном наборе имела 9 хромосом, то культивируемые растения этого вида могут иметь 18, 36, 54 и до 198 хромосом. Полиплоиды получают в результате воздействия на растения температуры, ионизирующей радиации, химических веществ (колхицин), которые разрушают веретено деления клетки. У таких растений гаметы диплоидны, а при слиянии с гаплоидными половыми клетками партнера в зиготе возникает триплоидный набор хромосом (2п + п = Зп). Такие триплоиды не образуют семян, они бесплодны, но высокоурожайны. Четные полиплоиды образуют семена.

Гетероплоидия — изменение числа хромосом, не кратное гаплоидному набору. При этом набор хромосом в клетке может быть увеличен на одну, две, три хромосомы (2п + 1; 2п + 2; 2п + 3) или уменьшен на одну хромосому (2л-1). Например, у человека с снндромом Дауна оказывается одна лишняя хромосома по 21-й паре и кариотип такого человека составляет 47 хромосом. У людей с синдромом Шерешевского —Тернера (2п-1) отсутствует одна Х-хромосома и в кариотипе остается 45 хромосом. Эти и другие подобные отклонения числовых отношений в кариотипе человека сопровождаются расстройством здоровья, нарушением психики и телосложения, снижением жизнеспособности и др.

Хромосомные мутации связаны с изменением структуры хромосом. Существуют следующие виды перестроек хромосом: отрыв различных участков хромосомы, удвоение отдельных фрагментов, поворот участка хромосомы на 180° или присоединение отдельного участка хромосомы к другой хромосоме. Подобное изменение влечет за собой нарушение функции генов в хромосоме и наследственных свойств организма, а иногда и его гибель.

Генные мутации затрагивают структуру самого гена и влекут за собой изменение свойств организма (гемофилия, дальтонизм, альбинизм, окраска венчиков цветков и т.д.). Генные мутации возникают как в соматических, так и в половых клетках. Они могут быть доминантными и рецессивными. Первые проявляются как у гомозигот так и  у гетерозигот, вторые — только у гомозигот. У растений возникшие соматические генные мутации сохраняются при вегетативном размножении. Мутации в половых клетках наследуются при семенном размножении растений и при половом размножении животных. Одни мутации оказывают на организм положительное действие, другие безразличны, а третьи вредны, вызывая либо гибель организма, либо ослабление его жизнеспособности (например, серповидноклеточная анемия, гемофилия у человека).

При выведении новых сортов растений и штаммов микроорганизмов используют индуцированные мутации, искусственно вызываемые теми или иными мутагенными факторами (рентгеновские или ультрафиолетовые лучи, химические вещества). Затем проводят отбор полученных мутантов, сохраняя наиболее продуктивные. В нашей стране этими методами получено много хозяйственно перспективных сортов растений: неполегающие пшеницы с крупным колосом, устойчивые к заболеваниям; высокоурожайные томаты; хлопчатник с крупными коробочками и др.

Свойства мутаций

1. Мутации возникают внезапно, скачкообразно.

2. Мутации наследственны, то есть стойко передаются из поколения в поколение.

3. Мутации ненаправленные — мутировать может любой локус, вызывая изменения как незначительных, так и жизненно важных признаков.

4. Одни и те же мутации могут возникать повторно.

5. По своему проявлению мутации могут быть полезными и вредными, доминантными и рецессивными.

Способность к мутированию — одно из свойств гена. Каждая отдельная мутация вызывается какой-то причиной, но в большинстве случаев эти причины неизвестны. Мутации связаны с изменениями во внешней среде. Это убедительно доказывается тем, что путем воздействия внешними факторами удается резко повысить их число.

Комбинативная изменчивость

Комбинативная наследственная изменчивость возникает в результате обмена гомологичными участками гомологичных хромосом в процессе мейоза, а также как следствие независимого расхождения хромосом при мейозе и случайного их сочетания при скрещивании. Изменчивость может быть обусловлена не только мутациями, но и сочетаниями отдельных генов и хромосом, новая комбинация которых при размножении приводит к изменению определенных признаков и свойств организма. Такой тип изменчивости называют комбинативной наследственной изменчивостью. Новые комбинации генов возникают:

1) при кроссинговере, во время профазы первого мейотического деления;

2) во время независимого расхождения гомологичных хромосом в анафазе первого мейотического деления;

3) во время независимого расхождения дочерних хромосом в анафазе второго мейотического деления

4) при слиянии разных половых клеток.

Сочетание в зиготе рекомбинированных генов может привести к объединению признаков разных пород и сортов.

В селекции важное значение имеет закон гомологических рядов наследственной изменчивости, сформулированный советским ученым Н.

И. Вавиловым. Он гласит:

Внутри разных видов и родов, генетически близких (т. е. имеющих единое происхождение), наблюдаются сходные ряды наследственной изменчивости. Такой характер изменчивости выявлен у многих злаков (рис, пшеница, овес, просо и др.), у которых сходно варьируют окраска и консистенция зерна, холодостойкость и иные качества. Зная характер наследственных изменений у одних сортов, можно предвидеть сходные изменения у родственных видов и, воздействуя на них мутагенами, вызывать у них подобные полезные изменения, что значительно облегчает получение хозяйственно ценных форм. Известны многие примеры гомологической изменчивости и у человека; например, альбинизм (дефект синтеза клетками красящего вещества) обнаружен у европейцев, негров и индейцев; среди млекопитающих — у грызунов, хищных, приматов; малорослые темнокожие люди — пигмеи  встречаются в тропических лесах экваториальной Африки, на Филиппинских островах и в джунглях полуострова Малакки; некоторые наследственные дефекты и уродства, присущие человеку, отмечены и у животных. Таких животных используют в качестве модели для изучения аналогичных дефектов у человека. Например, катаракта глаза бывает у мыши, крысы, собаки, лошади; гемофилия — у мыши и кошки, диабет — у крысы; врожденная глухота — у морской свинки, мыши, собаки; заячья губа — у мыши, собаки, свиньи и т. д. Эти наследственные дефекты — убедительное подтверждение закона гомологических рядов наследственной изменчивости Н. И. Вавилова.

Изменчивость (биологическая), разнообразие признаков и свойств у особей и групп особей любой степени родства. Изменчивость присуща всем живым организмам, поэтому в природе отсутствуют особи, идентичные по всем признакам и свойствам. Термин «Изменчивость» употребляется также для обозначения способности живых организмов отвечать морфофизиологическими изменениями на внешние воздействия и для характеристики преобразований форм живых организмов в процессе их эволюции. Изменчивость можно классифицировать в зависимости от причин, природы и характера изменений, а также целей и методов исследования.

Различают изменчивость: наследственную (генотипическую) и ненаследственную (паратипическую); индивидуальную и групповую; прерывистую (дискретную) и непрерывную; качественную и количественную; независимую изменчивость разных признаков и коррелятивную (соотносительную); направленную (определенную, по Ч.Дарвину) и ненаправленную (неопределенную, по Ч.Дарвину); адаптивную (приспособительную) и неадаптивную. При решении общих проблем биологии и особенно эволюции наиболее существенно подразделение изменчивости, с одной стороны, на наследственную и ненаследственную, а с другой — на индивидуальную и групповую. Все категории изменчивости могут встречаться в наследственной и ненаследственной, групповой и индивидуальной изменчивости.

Наследственная изменчивость обусловлена возникновением разных типов мутаций и их комбинаций в последующих скрещиваниях. В каждой достаточно длительно (в ряде поколений) существующей совокупности особей спонтанно и ненаправленно возникают различные мутации, которые в дальнейшем комбинируются более или менее случайно с разными уже имеющимися в совокупности наследственными свойствами. Изменчивость, обусловленную возникновением мутаций, называют мутационной, а обусловленную дальнейшим перекомбинированием генов в результате скрещивания — комбинационной. На наследственной изменчивости основано все разнообразие индивидуальных различий, которые включают:

а) как резкие качественные различия, не связанные друг с другом переходными формами, так и чисто количественные различия, образующие непрерывные ряды, в которых близкие члены ряда могут отличаться друг от друга сколь угодно мало;

б) как изменения отдельных признаков и свойств (независимая изменчивость), так и взаимосвязанные изменения ряда признаков (коррелятивная изменчивость);

в) как изменения, имеющие приспособительное значение (адаптивная изменчивость), так и изменения «безразличные» или даже снижающие жизнеспособность их носителей (неадаптивная изменчивость).

Все эти типы наследственных изменений составляют материал эволюционного процесса. В индивидуальном развитии организма проявление наследственных признаков и свойств всегда определяется не только основными, ответственными за данные признаки и свойства генами, но и их взаимодействием со многими другими генами, составляющими генотип особи, а также условиями внешней среды, в которой протекает развитие организма.


Рис.1. Сравнительная характеристика форм изменчивости

В понятие ненаследственной изменчивости входят те изменения признаков и свойств, которые у особей или определенных групп особей вызываются воздействием внешних факторов (питание, температура, свет, влажность и т.д.). Такие ненаследственные признаки (модификации) в их конкретном проявлении у каждой особи не передаются по наследству, они развиваются у особей последующих поколений лишь при наличии условий, в которых они возникли. Такая изменчивость называется также модификационной. Например, окраска многих насекомых при низкой температуре темнеет, при высокой — светлеет; однако их потомство будет окрашено независимо от окраски родителей в соответствии с температурой, при которой оно само развивалось. Существует еще одна форма ненаследственной изменчивости — так называемые длительные модификации, часто встречающиеся у одноклеточных организмов, но изредка наблюдаемые и у многоклеточных. Они возникают под влиянием внешних воздействий (например, температурных или химических) и выражаются в качественных или количественных отклонениях от исходной формы, обычно постепенно затухающих при последующем размножении. Они основаны, по-видимому, на изменениях относительно стабильных цитоплазматических структур.

Между ненаследственной и наследственной изменчивостями существует тесная связь. Ненаследственных (в буквальном смысле) признаков и свойств нет, так как ненаследственные изменения являются отражением наследственно обусловленной способности организмов отвечать определенными изменениями признаков и свойств на воздействия факторов внешней среды. При этом пределы ненаследственных изменений определяются нормой реакции генотипа на условия среды.

Наследственную и ненаследственную изменчивости изучают как внутри отдельных совокупностей живых организмов, когда исследуют различия признаков отдельных особей (индивидуальная изменчивость ), так и при сравнении между собой различных совокупностей особей ( групповая изменчивость ); в основе любых межгрупповых различий также лежит индивидуальная изменчивость. Даже в пределах близкородственных групп нет абсолютно идентичных особей, которые не различались бы по степени выраженности каких-либо наследственных или ненаследственных признаков и свойств. Ввиду сложности организации живых систем, даже у генотипически идентичных (например, однояйцевые близнецы) и развивающихся в практически одинаковых условиях особей всегда можно обнаружить хотя бы незначительные морфофизиологические различия, связанные с неизбежными флуктуациями условий среды и процессов индивидуального развития. Групповая изменчивость включает различия между совокупностями любых рангов — от различий между небольшими группами особей в пределах популяции до различий между царствами живой природы (животные — растения).

В сущности, вся систематика организмов построена на сравнительном анализе групповой изменчивости. Для изучения пусковых механизмов эволюционного процесса особое значение имеют различные формы внутривидовой групповой изменчивости. Большинство видов распадается на подвиды или географические расы. В случае полной изоляции географических форм они могут резко различаться по одному или нескольким признакам. Популяции, населяющие обширные территории и не разделенные резкими изолирующими барьерами, могут (благодаря перемешиванию и скрещиванию) постепенно переходить друг в друга, образуя количественные градиенты по тем или иным признакам ( клинальная изменчивость ). Географическая, в том числе и клинальная, изменчивость в природных условиях — результат действия изоляции, естественного отбора и других факторов эволюции, приводящих к разделению исходной группы особей в ходе исторического формирования вида на две или несколько групп, различающихся по численным соотношениям генотипов.

В некоторых случаях различия между группами особей в пределах вида не связаны с различиями их генотипического состава, а обусловливаются модификационной изменчивость (различными реакциями сходных генотипов на разные внешние условия). Так называемая сезонная изменчивость обусловлена влиянием на развитие соответствующих поколений разных погодных условий (например, у некоторых насекомых и травянистых растений, дающих два поколения в год, весенние и осенние популяции различаются рядом признаков). Иногда сезонные формы могут быть результатом отбора разных генотипов (например, рано- и поздноцветущие формы трав на сенокосных лугах: в течение многих поколений устранялись особи, цветущие летом, во время сенокоса). Большой интерес представляет экологическая изменчивость — различия между группами особей одного вида, растущими или живущими в разных местах (возвышенности и низменности, заболоченные и сухие участки и т.д.). Часто такие формы называются экотипами. Возникновение экотипов также может быть результатом как модификационных изменений, так и отбора генотипов, лучше приспособленных к местным условиям.

Наследственной изменчивостью обусловлены различные формы внутрипопуляционного полиморфизма. В некоторых популяциях наблюдается сосуществование двух или более ясно различимых форм (например, у двухточечной божьей коровки почти во всех популяциях встречаются черная форма с красными пятнами и красная форма с черными пятнами). В основе этого явления могут лежать разные эволюционные механизмы: неодинаковая приспособленность сосуществующих форм к условиям различных сезонов года, повышенная жизнеспособность гетерозигот, в потомстве которых постоянно выщепляются обе гомозиготные формы или другие, еще недостаточно изученные механизмы. Таким образом, и групповая, и индивидуальная изменчивости включают изменения как наследственной, так и ненаследственной природы.

Независимой изменчивости признаков противопоставляют коррелятивную изменчивость — взаимосвязанное изменение различных признаков и свойств: связь между ростом и весом особей (положительная корреляция) или темпом клеточного деления и величиной клеток (отрицательная корреляция).

Корреляции могут быть обусловлены чисто генетическими причинами (плейотропия) или взаимозависимостями процессов становления определенных признаков и свойств в индивидуальном развитии особей (онтогенетические корреляции), а также сходными реакциями разных признаков и свойств на одни и те же внешние воздействия (физиологические корреляции). Наконец, корреляции могут отражать историю происхождения популяций из смеси двух или более форм, каждая из которых привносит не отдельные признаки, а комплексы взаимосвязанных признаков и свойств (исторические корреляции). Изучение коррелятивной изменчивости имеет важное значение в палеонтологии (например, при реконструкции вымерших форм по отдельным ископаемым остаткам), в антропологии (например, при восстановлении черт лица на основе изучения черепа), в селекции и медицине.

Основные методы изучения изменчивость — сравнительно-описательный и биометрический. Совокупность этих методов позволяет исследовать как паратипическую, так и генотипическую компоненты общей фенотипической изменчивости. Так, первую можно изучать, сравнивая генотипически идентичные клоны и чистые линии, развивающиеся в разных условиях. Сложнее выделить чисто генотипическую изменчивость из общей фенотипической. Это возможно сделать на основе биометрического анализа. В медицинской генетике для тех же целей используется определение процента конкордантности (совпадения) тех или иных признаков у одно- и разнояйцевых близнецов.

Наследственность и изменчивость живых организмов иногда противопоставляют как «консервативное» и «прогрессивное» начала. В действительности же они теснейшим образом связаны. Отсутствие полной стабильности генотипа обусловливает мутационную и (в ходе дальнейших скрещиваний и расщеплений) комбинационную изменчивость, то есть в целом — генотипическую изменчивость. Паратипическая (ненаследственная) изменчивость — результат лишь относительной стабильности генотипа при определении им в онтогенезе нормы реакции при развитии признаков и свойств особей. Из этого следует возможность экспериментальных воздействий как на наследственную, так и на ненаследственную изменчивость. Первую можно усилить воздействием мутагенных факторов (излучения, температура, химические вещества). Размах и направление комбинационной изменчивости можно контролировать с помощью искусственного отбора. На ненаследственную изменчивость можно воздействовать, изменяя условия среды (питание, свет, влажность и т.д.), в которых протекает развитие организма.

Четкое представление о категориях и формах изменчивости необходимо при построении эволюционных схем и теорий, так как явления наследственности и изменчивости лежат в основе эволюционного процесса, а также в практической селекции растений и животных, при изучении ряда проблем медицинской географии и популяционной антропологии.



Генотипическая изменчивость.

Комбинативная (комбинационная) изменчивость – это возникновение новых наследственных сочетаний признаков у потомства в результате перекомбинации признаков отцовской и материнской форм при половом размножении.

В основе комбинативной изменчивости лежит половое размножение организмов, вследствие которого возникает огромное разнообразие генотипов. Практически неограниченными источниками генетической изменчивости служат три процесса:

1. Независимое расхождение гомологичных хромосом в первом мейотическом делении. Именно независимое комбинирование хромосом при мейозе является основой третьего закона Менделя. Появление зеленых гладких и желтых морщинистых семян гороха во втором поколении от скрещивания растений с желтыми гладкими и зелеными морщинистыми семенами – пример комбинативной изменчивости.

2. Взаимный обмен участками гомологичных хромосом, или кроссинговер. Он создает новые группы сцепления, т. е. служит важным источником генетической рекомбинации аллелей. Рекомбинантные хромосомы, оказавшись в зиготе, способствуют появлению признаков, нетипичных для каждого из родителей.

3. Случайное сочетание гамет при оплодотворении.

Эти источники комбинативной изменчивости действуют независимо и одновременно, обеспечивая при этом постоянную «перетасовку» генов, что приводит к появлению организмов с другими генотипом и фенотипом (сами гены при этом не изменяются). Однако новые комбинации генов довольно легко распадаются при передаче из поколения в поколение.

Комбинативная изменчивость является важнейшим источником всего колоссального наследственного разнообразия, характерного для живых организмов. Однако перечисленные источники изменчивости не порождают существенных для выживания стабильных изменений в генотипе, которые необходимы, согласно эволюционной теории, для возникновения новых видов. Такие изменения возникают в результате мутаций.

Мутационная изменчивость – это изменение признаков и свойств организма в результате мутации. В основе этой изменчивости лежит изменение структуры гена, хромосомы или изменения числа хромосом. Мутация – это спонтанное изменение генетического материала.

Термин «мутация» (от лат. mutatio – изменение) был введен в генетику де Фризом, голландским ученым, который в течение многих лет изучал явление наследственной изменчивости.

Мутациями называют наследственные изменения признака, обусловленные изменениями наследственных структур.

Мутации возникают в любом периоде жизни организма, начиная от гаметы и зиготы и кончая старостью.

Процесс образования мутаций получил название – мутагенеза.

Мутации, возникающие в естественных условиях, называют спонтанными, искусственно вызванные – индуцированными.

Классификация мутаций.

В зависимости от того, изменением каких наследственных структур обусловлена мутация, принята следующая их классификация: Мутации наблюдаются хромосомные и генные.

1.

Хромосомные мутации – это изменение в числе или структуре хромосом. К числовым мутациям (или геномным) относятся: гаплоидия, полиплоидия и гетероплоидия.

1.1. Гаплоидия – геномная мутация, в результате которой возникают гаплоиды – организмы с редуцированным (одинарным) числом хромосом. В клетках гаплоидов содержится только половина соматического набора хромосом (n), присущего данному виду, то есть такое же число хромосом, как и в нормальных половых клетках – гаметах.

1.2. Полиплоидия – это увеличение числа полных хромосомных наборов в четное или нечетное число раз.

1.3. Гетероплоиды отличаются от диплоидных организмов тем, что у них нормальный диплоидный набор хромосом увеличен или уменьшен на одну, реже на две каких – либо хромосомы.

У человека, трисомикам и моносомикам присущи физические дефекты и снижение умственных способностей.

Примеры трисомий:

— синдром Дауна, в кариотипе дополнительная 21-ая хромосома; 47, в 70% случаев материнское и 30% отцовское происхождение. Вероятность рождения ребенка с синдромом Дауна повышается с увеличением возраста рожениц. Так, вероятность родить ребенка с болезнью Дауна у женщин 45-летнего возраста в 16 раз выше, чем для рожениц 20-24 лет;

— синдром Патау, в кариотипе дополнительная 13 хромосома; синдром Клайнфельтера добавочная Х-хромосома,47 XXY)

Моносомии:

Синдром Шерешевского-Тернера, 45 XO, утрачена одна Х-хромосома.

Хромосомные абберации (перестройки)

это изменение структуры одной или нескольких хромосом вследствие их разрывов и перестроек.

Установлено несколько типов хромосомных мутаций:

2.1. Делеция – выпадение участка хромосомы в средней ее части, содержащего обычно целый комплекс генов, в результате чего она укорачивается. Крупные делеции, как правило, летальны и вызывают гибель организма. Известна крупная делеция 21-й хромосомы человека, которая вызывает тяжелую форму белокровия.

2.2. Инверсия – возникает в результате разрыва хромосомы одновременно в двух местах с сохранением внутреннего участка, который воссоединяется с этой же хромосомой после поворота на 180°. При инверсии нарушается конъюгация гомологичных хромосом в мейозе.

2.3. Дупликация – удвоение фрагмента одной хромосомы или разных хромосом.

2.4. Нехватки – потеря концевого фрагмента хромосомы.

2.5. Транслокация – обмен участками между негомологичными хромосомами; ее относят к межхромосомным абберациям, так как структурные изменения происходят одновременно в двух или более негомологичных хромосомах. При транслокациях нарушается конъюгация гомологичных хромосом и образуются нежизнеспособные гаметы.

Транслокации подразделяются на реципрокные и нереципрокные, то есть такие, при которых происходит равноценный обмен (еципрокные) или неравный обмен (часто с потерей генетического материала, нереципрокные).

Примером реципрокной транслокации может служить так называемая филадельфийская хромосома:

Филадельфийская хромосома возникает вследствие реципрокной транслокации между хромосомами 9 и 22, и эта мутация вызывает 95 % случаев хронического миелолейкоза. Также эта мутация является одной из самых распространённых при В-клеточном остром лимфобластном лейкозе взрослых. В результате транслокации t(9;22)(q34;q11) ген ABL1 (Abelson murine leukemia viral oncogene homolog 1) из хромосомы 9 (участок q34) объединяется с участком BCR (breakpoint cluster region) хромосомы 22 (участок q11). В новый химерный белок BCR-ABL входит участок белка ABL1, обладающий тирозинкиназной активностью. В норме тирозинкиназы являются медиаторами, активируемыми связыванием факторов роста с мембранными рецепторными белками и передающими сигнал к делению в ядро, но BCR-ABL является постоянно активной формой и вызывает безудержное деление клетки.

Дата добавления: 2017-03-29; просмотров: 605;

ПОСМОТРЕТЬ ЕЩЕ:

Оставьте комментарий