Биомеханика вдоха и выдоха

Поиск Лекций

Биомеханика вдоха и выдоха

Дыхательные мышцы являются «двигателем» вентиляции. Спокойное и форсированное дыхание отличается по многим параметрам, в том числе по количеству дыхательных мышц, выполняющих дыхательные движения. Различают инспираторные (отвечающие за вдох) и экспираторные(отвечающие за выдох) мышцы. Также дыхательные мышцы разделяют на основныеи вспомогательные. К основным инспираторным мышцам относятся: а) диафрагма; б) наружные межреберные мышцы; в) внутренние межхрящевые мышцы.

Рис.4.Механизм дыхательных движений (изменение объема грудной клетки) за счет диафрагмы и мышц брюшного пресса (А) и сокращения наружных межреберных мышц (Б) (слева — модель движения ребер)

При спокойном дыхании 4/5 инспирации осуществляется диафрагмой. Сокращение мышечной части диафрагмы, передаваясь на сухожильный центр, приводит к уплощению ее купола и увеличению вертикальных размеров грудной полости. При спокойном дыхании купол диафрагмы опускается примерно на 2 см. В поднятии ребер участвуют внутренние межреберные и межхрящевые мышцы. Они проходят косо от ребра к ребру сзади и сверху, вперед и вниз (дорсокраниально и вентрокаудально). За счет их сокращения увеличиваются латеральный и сагггитальный размеры грудной клетки. При спокойном дыхании выдох происходит пассивно при помощи эластических возвратных сил (точно так же как растянутая пружина сама возвращается в исходное положение).

При форсированном дыхании к основным испираторным мышцам присоединяются вспомогательные: большие и малые грудные, лестничные, грудинно-ключично-сосцевидные, трапециевидные.

Рис.5. Важнейшие вспомогательные инспираторные мышцы (А) и вспомогательные экспираторные дыхательные мышцы (Б)

Для того чтобы эти мышцы могли участвовать в акте вдоха, необходимо, чтобы участки их прикрепления были зафиксированы. Типичным примером служит поведение больного с затрудненным дыханием. Такие больные упираются руками в неподвижный предмет, в результате чего плечи фиксируются и отклоняют голову назад.

Выдох при форсированном дыхании обеспечивается экспираторнымимышцами: основными – внутренними межреберными мышцами и вспомогательными — мышцами брюшной стенки (наружными и внутренними косыми, поперечными, прямыми).

В зависимости от того, связано ли расширение грудной клетки при нормальном дыхании преимущественно с поднятием ребер или уплощением диафрагмы, различают грудной (реберный) и брюшной типы дыхания.

Контрольные вопросы

1. Какие мышцы относятся к основным инспираторным и экспираторным ?

2. С помощью каких мышц осуществляется спокойный вдох ?

3. Какие мышцы относятся к вспомогательным инспираторным и экспираторным ?

4. С помощью каких мышц осуществляется форсированное дыхание ?

5. Что такое грудной и брюшной типы дыхания ?

Сопротивление дыханию

Дыхательные мышцы совершают работу, равную в покое 1–5 Дж и обеспечивающую преодоление сопротивления дыханию и создание градиента давления воздуха между легкими и внешней средой. При спокойном дыхании на работу дыхательных мышц затрачивается лишь 1 % потребляемого организмом кислорода (ЦНС потребляет 20 % всей энергии). Расход энергии на обеспечение внешнего дыхания незначителен, т.к.:

1. при вдохе грудная клетка расправляется сама за счет собственных упругих сил и способствует преодолению эластической тяги легких;

2. внешнее звено системы дыхания работает подобно качелям (значительная часть энергии сокращения мышц переходит в потенциальную энергию эластической тяги легких )

3. мало неэластическое сопротивление вдоху и выдоху

Выделяют две разновидности сопротивления:

1) вязкое неэластическое сопротивление тканей

2) эластическое (упругое) сопротивление легких и тканей.

Вязкое неэластическое сопротивление обусловлено:

— аэродинамическим сопротивлением воздухоносных путей

-вязким сопротивлением тканей

Более 90 % неэластического сопротивления приходится на аэродинамическое сопротивление воздухоносных путей (возникает при прохождении воздуха через относительно узкую часть дыхательных путей – трахею, бронхи и бронхиолы). Воздухоносные пути по мере ветвления бронхиального дерева к периферии становятся все более узкими и можно предположить, что именно самые узкие ветви оказывают наибольшее сопротивление дыханию. Однако, суммарный диаметр к периферии увеличивается, а сопротивление уменьшается. Так, на уровне поколения 0 (трахея) суммарная площадь сечения около 2,5 см2, на уровне терминальных бронхиол (поколение 16) — 180 см2, респираторных бронхиол (от 18–го поколения) — около 1000 см2 и далее >10 000 см2. Поэтому сопротивление воздухоносных путей в основном локализовано во рту, носе, зеве, трахее, долевых и сегментарных бронхах приблизительно до шестой генерации разветвления. На периферические воздухоносные пути с диаметром меньше 2 мм приходится менее 20 % сопротивления дыханию. Именно эти отделы обладают наибольшей растяжимостью (С -compliance).

Податливость, или растяжимость (C) — количественный показатель, характеризующий упругие свойства лёгких

C = DV/DP

где С — степень растяжимости (мл/см водн.ст.); DV — изменение объёма (мл), DР — изменение давления (см вод.ст)

Общая податливость обоих лёгких (C) у взрослого человека составляет около 200 мл воздуха на 1 см водн.ст. Это означает, что при увеличении транспульмонального давления (Pтп) на 1 см водн.ст. объём лёгких увеличивается на 200 мл.

Рассчитать общее аэродинамическое сопротивление можно, используя следующее уравнение (аналогично закону Ома для электричества):

R= (РА-Рао)/V

где РА –альвеолярное давление

Рао – давление в ротовой полости

V –объемная скорость вентиляции за единицу времени.

Альвеолярное давление не может быть измерено прямым методом, но оно может быть выведено из плеврального давления. Плевральное давление можно определить прямыми методами или косвенно – интегральной плетизмографией.

Таким образом, чем выше V, т.е. чем сильнее мы дышим, тем выше должна быть разница давления при постоянном сопротивлении. Чем выше, с другой стороны, сопротивление воздухоносных путей, тем выше должна быть разница давления для получения данной интенсивности дыхательного потока. Неэластическое сопротивление дыханию зависит от просвета воздухоносных путей — особенно голосовой щели, бронхов. Приводящие и отводящие мышцы голосовых складок, регулирующие ширину голосовой щели, управляются через посредство нижнего гортанного нерва группой нейронов, которые сосредоточены в области вентральной дыхательной группы продолговатого мозга. Такое соседство не случайно: во время вдоха голосовая щель несколько расширяется, на выдохе — сужается, увеличивая сопротивление потоку воздуха, что служит одной из причин большей длительности экспираторной фазы. Подобным же образом циклически меняются просвет бронхов и их проходимость.

Тонус гладкой мускулатуры бронхов зависит от активности ее холинергической иннервации: соответствующие эфферентные волокна проходят в составе блуждающего нерва.

Расслабляющее влияние на бронхиальный тонус оказывают симпатическая (адренергическая) иннервация, а также недавно открытая «неадренергическая тормозная» система. Влияние последней опосредуется некоторыми нейропептидами, а также микроганглиями, обнаруженными в мышечной стенке воздухоносных путей; определенный баланс между этими влияниями способствует установлению оптимального для данной скорости воздушных потоков просвета трахеобронхиального дерева.

Нарушение регуляции бронхиального тонуса у человека составляет основу бронхоспазма, в результате которого резко уменьшается проходимость воздухоносных путей (обструкция) и повышается сопротивление дыханию. Холинергическая система блуждающего нерва участвует также в регуляции секреции слизи и движений ресничек мерцательного эпителия носовых ходов, трахеи и бронхов, стимулируя тем самым мукоцилиарный транспорт выделение попавших в воздухоносные пути инородных частиц. Избыток слизи, характерный для бронхитов, также создает обструкцию и увеличивает сопротивление дыханию.

Эластическое сопротивление легких и тканей включает: 1) эластические силы самой легочной ткани; 2) эластические силы, вызванные поверхностным натяжением слоя жидкости на внутренней поверхности стенок альвеол и других дыхательных путей легких.

Коллагеновые и эластические волокна, вплетенные в паренхиму легких, создают эластическую тягу легочной ткани. В спавшихся легких эти волокна находятся в эластически сокращенном и скрученном состоянии, но когда легкие расширяются, они растягиваются и расправляются, при этом удлиняются и развивают все большую эластическую тягу. Величина тканевых эластических сил, обуславливающих спадение наполненных воздухом легких, составляет только 1/3 всей эластичности легких

На границе раздела между воздухом и жидкостью, покрывающей тонким слоем эпителий альвеол, возникают силы поверхностного натяжения. Причем, чем меньше диаметр альвеол, тем больше силы поверхностного натяжения. На внутренней поверхности альвеол жидкость стремится к сокращению и выжиманию воздуха из альвеол к бронхам, в результате альвеолы начинают спадаться. Если бы эти силы действовали беспрепятственно, то благодаря соустьям между отдельными альвеолами воздух из малых альвеол переходил бы в большие, а сами малые альвеолы должны были бы исчезать. Для снижения поверхностного натяжения и сохранения альвеол в организме существует сугубо биологическое приспособление. Это – сурфактанты (поверхностно-активные вещества), действующие как детергент.

Сурфактантпредставляет собой смесь, которая, по существу, состоит из фосфолипидов (90-95 %), включающих, прежде всего, фосфатидилхолин (лецитин). Наряду с этим он содержит четыре специфических для сурфактанта протеина, а также небольшое количество угольного гидрата. Общее количество сурфактанта в лёгких крайне невелико. На 1 м2 альвеолярной поверхности приходится около 50 мм3 сурфактанта. Толщина его плёнки составляет 3% общей толщины аэрогематического барьера. Сурфактант образуется альвеолярными эпителиальными клетками II типа. Слой сурфактанта уменьшает поверхностное натяжение альвеол почти в 10 раз. Снижение поверхностного натяжения происходит вследствие того, что гидрофильные головки этих молекул прочно связываются с молекулами воды, а их гидрофобные окончания очень слабо притягиваются друг к другу и другим молекулам в растворе. Отталкивающие силы сурфактанта противодействуют силам притяжения молекул воды.

Функции сурфактанта:

1) стабилизация размера альвеол в крайних положениях – на вдохе и на выдохе

2) защитная роль: защищает стенки альвеол от повреждающего действия окислителей, обладает бактериостатической активностью, обеспечивает обратный транспорт пыли и микробов по воздухоносным путям, уменьшает проницаемость легочной мембраны (профилактика отека легких).

Сурфактанты начинают синтезироваться в конце внутриутробного периода. Их присутствие облегчает выполнение первого вдоха. При преждевременных родах легкие ребенка могут оказаться неподготовленными для дыхания. Недостаток или дефекты сурфактанта вызывают тяжёлое заболевание (синдром дыхательного дистресса). Поверхностное натяжение в лёгких у таких детей высокое, поэтому многие альвеолы находятся в спавшемся состоянии.

Контрольные вопросы

1. Почему расход энергии на обеспечение внешнего дыхания незначителен ?

2. Какие виды сопротивления в дыхательных путях выделяют ?

3. Чем обусловлено вязкое неэластическое сопротивление ?

4. Что такое растяжимость, как ее определить ?

5. От каких факторов зависит вязкое неэластическое сопротивление ?

6. Чем обусловлено эластическое сопротивление легких и тканей?

7. Что такое сурфактанты, какие функции они выполняют ?

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Механизм внешнего дыхания. Биомеханика вдоха и выдоха.

Внешнее дыхание представляет собой обмен газов между организмом и внешней средой. Оно осуществляется с помощью двух процессов — легочного дыхания и дыхания через кожу.

Легочное дыхание заключается в обмене газов между альвеолярным воздухом и окружающей средой и между альвеолярным воздухом и капиллярами. При газообмене с внешней средой поступает воздух, содержащий 21 % кислорода и 0,03—0,04 % углекислого газа, а выдыхаемый воздух содержит 16 % кислорода и 4 % углекислого газа. Кислород поступает из атмосферного воздуха в альвеолярный, а углекислый газ выделяется в обратном направлении.

При обмене с капиллярами малого круга кровообращения в альвеолярном воздухе давление кислорода 102 мм рт. ст., а углекислого газа — 40 мм рт. ст., напряжение в венозной крови кислорода — 40 мм рт. ст., а углекислого газа — 50 мм рт. ст. В результате внешнего дыхания от легких оттекает артериальная кровь, богатая кислородом и бедная углекислым газом.

Внешнее дыхание осуществляется в результате ритмических движений трудной клетки. Дыхательный цикл состоит из фаз вдоха и выдоха, между которыми отсутствует пауза. В покое у взрослого человека частота дыхательных движений 16-20 в минуту.

Вдох— это активный процесс. При спокойном вдохе сокращаются наружные межреберные и межхрящевые мышцы. Они приподнимают ребра, а грудина при этом отодвигается вперед. Это ведет к увеличению сагиттального и фронтального размеров грудной полости. Одновременно сокращаются мышцы диафрагмы,. ее купол опускается, и органы брюшной полости сдвигаются вниз, в стороны и вперед. За счет этого грудная полость увеличивается и в вертикальном направлении.

После окончания вдоха дыхательные мышцы расслабляются — начинается выдох. Спокойный выдох — пассивный процесс.

Во время него происходит возвращение грудной клетки в исходное состояние под действием ее собственного веса, натянутого связочного аппарата и давления на диафрагму органов брюшной полости. При физической нагрузке, патологических состояниях, сопровождающихся одышкой (туберкулез легких, бронхиальная астма и т.д.) возникает форсированное дыхание. В акт вдоха и выдоха вовлекаются вспомогательные мышцы. При форсированном вдохе дополнительно сокращаются грудино-ключично-сосцевидные, лестничные, грудные и трапециевидные мышцы. Они способствуют дополнительному поднятию ребер. При форсированном выдохе сокращаются внутренние межреберные мышцы, которые усиливают опускание ребер. Т.е. форсированый выдох — это активный процесс.

Давление в плевральной полости и его происхождение и роль в механизме внешнего дыхания. Изменения давления в плевральной полости в разные фазы дыхательного цикла.

Давление в плевральной полости и его происхождение и роль в механизме внешнего дыхания. Изменения давления в плевральной полости в разные фазы дыхательного цикла.

Давление в плевральной полости всегда ниже атмосферного — отрицательное давление.

Величина отрицательного давления в плевральной полости:

  • к концу максимального выдоха — 1-2 мм рт. ст.,
  • к концу спокойного выдоха — 2-3 мм рт. ст.,
  • к концу спокойного вдоха — 5-7 мм рт. ст.,
  • к концу максимального вдоха — 15-20 мм рт. ст.

Интенсивность роста грудной клетки выше, чем ткани легких. Это приводит к увеличению объемов плевральной полости, а поскольку она герметична, то давление становится отрицательным.

Эластическая тяга легких— сила, с которой ткань стремится к спаданию.

Эластическая тяга лёгких обусловлена:

1) поверхностным натяжением плёнки жидкости, покрывающей внутреннюю поверхность альвеол;

2) упругостью ткани стенок альвеол вследствие наличия в них эластических волокон;

3) тонусом бронхиальных мышц.

5.

1. Биомеханика вдоха и выдоха

ЖЕЛ и составляющие её компоненты. Методы их определения. Остаточный воздух.

О функционировании аппарата внешнего дыхания можно судить по объему воздуха, поступающего в легкие в ходе одного дыхательного цикла. Объем воздуха, проникающего в легкие при максимальном вдохе, образует общую емкость легких. Она составляет примерно 4,5—6 л и состоит из жизненной емкости легких и остаточного объема.

Жизненная емкость легких— то количество воздуха, которое способен выдохнуть человек после глубокого вдоха. Она является одним из показателей физического развития организма и считается патологической, если составляет 70—80 % от должного объема. В течение жизни данная величина может меняться. Это зависит от ряда причин: возраста, роста, положения тела в пространстве, приема пищи, физической активности, наличия или отсутствия беременности.

Жизненная емкость легких состоит из дыхательного и резервного объемов. Дыхательный объем— это то количество воздуха, которое человек вдыхает и выдыхает в спокойном состоянии. Его величина составляет 0,3—0,7 л. Он поддерживает на определенном уровне парциальное давление кислорода и углекислого газа в альвеолярном воздухе. Резервный объем вдоха — количество воздуха, которое может дополнительно вдохнуть человек после спокойного вдоха. Как правило, это 1,5—2,0 л. Он характеризует способность легочной ткани к дополнительному растяжению. Резервный объем выдоха — то количество воздуха, которое можно выдохнуть вслед за нормальным выдохом.

Остаточный объем — постоянный объем воздуха, находящийся в легких даже после максимального выдоха. Составляет около 1,0—1,5 л.

Важной характеристикой дыхательного цикла является частота дыхательных движений в минуту. В норме она составляет 16—20 движений в мин. Продолжительность дыхательного цикла подсчитывается прделении 60 с на величину частоты дыхания.

Время входа и выдоха можно определить по спирограмме.

Лёгочные объёмы:

1. Дыхательный объём (ДО) = 500 мл

2. Резервный объём вдоха (РОвдоха)= 1500-2500 мл

3. Резервный объём выдоха (РОвыдоха)=1000 мл

4. Остаточный объём (ОО) = 1000 -1500мл

Лёгочные ёмкости:

— общая ёмкость лёгких (ОЕЛ)= (1+2+3+4) = 4-6 литров

— жизненная ёмкость лёгких (ЖЕЛ) = (1+2+3) =3,5-5 литров

— функциональная остаточная ёмкость лёгких (ФОЕ) = (3+4 ) = 2-3 литра

— ёмкость вдоха (ЕВ) = (1+2) = 2-3 литра

Минутный объём вентиляции лёгких и его изменения при различных нагрузках, методы его определения. «Вредное пространство» и эффективная лёгочная вентиляция. Почему редкое и глубокое дыхание более эффективно.

Минутный объем— количество воздуха, обменивающееся с окружающей средой при спокойном дыхании. Определяется произведением дыхательного объема на частоту дыхания и составляет 6—8 л.

Его величина, в среднем, составляет 500 мл, частота дыханий за минуту равна 12-16 и, следовательно, минутный объём дыхания, в среднем, составляет 6-8 л.

Однако, не весь воздух, поступивший в органы дыхания, принимает участие в газообмене. Часть воздуха заполняет воздухоносные пути (гортань, трахею, бронхи, бронхиолы) и не доходит до альвеол, поскольку при выдохе первым покидает организм.

Этот воздух получил название – воздух вредного пространства.Его объём, в среднем, составляет 140-150 мл. Поэтому вводится понятие эффективная лёгочная вентиляция. Это то количество воздуха за одну минуту, которое принимает участие в газообмене. Эффективная лёгочная вентиляция при одном и том же минутном объёме дыхания может быть различной. Так, чем больше дыхательный объём, тем меньше относительный объём воздуха вредного пространства. Поэтому редкое и глубокое дыхание более эффективно для снабжения организма кислородом, так как вентиляция альвеол увеличивается.

Дыхание, его основные этапы. Механизмы внешнего дыхания. Биомеханика вдоха и выдоха.

Дыхание – сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови.

В процессе дыхания различают три звена: внешнее, или легочное дыхание, транспорт газов кровью и внутреннее, или тканевое, дыхание.

Дыхание — совокупность физиологических процессов, обеспечивающих непрерывное поступление кислорода к тканям, использование его в окислительных реакциях, а также удаление из организма образующихся в процессе метаболизма углекислого газа и частично воды. К системе органов дыхания относятся носовая полость, гортань, бронхи и легкие. Дыхание состоит из следующих основных этапов:

внешнего дыхания, обеспечивающего газообмен между легкими и внешней средой;

газообмена между альвеолярным воздухом и притекающей к легким венозной кровью;

транспорта газов кровью; газообмена между артериальной кровью и тканями;

тканевого дыхания.

Внешнее дыхание — это газообмен между организмом и окружающим его атмосферным воздухом. Осуществляется в два этапа — обмен газов между атмосферным и альвеолярным воздухом и газообмен между кровью легочных капилляров и альвеолярным воздухом.

Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией аппарата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа. О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, частоте дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т. д.

Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.

Внутреннее или тканевое дыхание также может быть разделено на два этапа. Первый этап — обмен газов между кровью и тканями. Второй — потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).

Вдох и выдох

Вдох начинается с сокращения дыхательных (респираторных) мышц.

Мышцы, сокращение которых приводит к увеличению объема грудной полости, называются инспираторными, а мышцы, сокращение которых приводит к уменьшению объема грудной полости, называются экспираторными. Основной инспираторной мышцей является мышца диафрагмы. Сокращение мышцы диафрагмы приводит к тому, что купол ее уплощается, внутренние органы оттесняются вниз, что приводит к увеличению объема грудной полости в вертикальном направлении. Сокращение наружных межреберных и межхрящевых мышц приводит к увеличению объема грудной полости в сагитальном и фронтальном направлениях.

Легкие покрыты серозной оболочкой — плеврой, состоящей из висцерального и париетального листков. Париетальный листок соединен с грудной клеткой, а висцеральный — с тканью легких. При увеличении объема грудной клетки, в результате сокращения инспираторных мышц, париетальный листок последует за грудной клеткой. В результате появления адгезивных сил между листками плевры, висцеральный листок последует за париетальным, а вслед за ними и легкие. Это приводит к возрастанию отрицательного давления в плевральной полости и к увеличению объема легких, что сопровождается снижением в них давления, оно становится ниже атмосферного и воздух начинает поступать в легкие — происходит вдох.

Между висцеральным и париетальным листками плевры находится щелевидное пространство, которое называется плевральной полостью. Давление в плевральной полости всегда ниже атмосферного, его называют отрицательным давлением. Величина отрицательного давления в плевральной полости равна: к концу максимального выдоха — 1-2 мм рт. ст., к концу спокойного выдоха — 2-3 мм рт. ст., к концу спокойного вдоха -5-7 мм рт. ст., к концу максимального вдоха — 15-20 мм рт. ст.

Отрицательное давление в плевральной полости обусловлено так называемой эластической тягой легких — силой, с которой легкие постоянно стремятся уменьшить свой объем. Эластическая тяга легких обусловлена двумя причинами:

• наличием в стенке альвеол большого количества эластических волокон;

• поверхностным натяжением пленки жидкости, которой покрыта внутренняя поверхность стенок альвеол.

Вещество, покрывающее внутреннюю поверхность альвеол называется сурфактантом.

Биомеханика выдоха

Сурфактант имеет низкое поверхностное натяжение и стабилизирует состояние альвеол, а именно, при вдохе он предохраняет альвеолы от перерастяжения (молекулы сурфактанта расположены далеко друг от друга, что сопровождается повышением величины поверхностного натяжения), а при выдохе — от спадения (молекулы сурфактанта расположены близко друг к другу, что сопровождается снижением величины поверхностного натяжения).

Значение отрицательного давления в плевральной полости в акте вдоха проявляется при поступлении воздуха в плевральную полость, т. е. пневмотораксе. Если в плевральную полость поступает небольшое количество воздуха, легкие частично спадаются, но вентиляция их продолжается. Такое состояние называется закрытым пневмотораксом. Через некоторое время воздух из плевральной полости всасывается и легкие расправляются.

При нарушении герметичности плевральной полости, например, при проникающих ранениях грудной клетки или при разрыве ткани легкого в результате его поражения каким-либо заболеванием, плевральная полость сообщается с атмосферой и давление в ней становится равным атмосферному, легкие спадаются полностью, их вентиляция прекращается. Такой пневмоторакс называется открытым. Открытый двусторонний пневмоторакс несовместим с жизнью.

Частичный искусственный закрытый пневмоторакс (введение в плевральную полость с помощью иглы некоторого количества воздуха) применяется с лечебной целью, например, при туберкулезе частичное спадение пораженного легкого способствует заживлению патологических полостей (каверн).

При глубоком дыхании в акте вдоха участвуют ряд вспомогательных дыхательных мышц, к которым относятся: мышцы шеи, груди, спины. Сокращение этих мышц вызывает перемещение ребер, что оказывает содействие инспираторным мышцам.

При спокойном дыхании вдох осуществляется активно, а выдох пассивно. Силы, обеспечивающие спокойный выдох:

• сила тяжести грудной клетки;

• эластическая тяга легких;

• давление органов брюшной полости;

• эластическая тяга перекрученных во время вдоха реберных хрящей.

В активном выдохе принимают участие внутренние межреберные мышцы, задняя нижняя зубчатая мышца, мышцы живота.

Дата добавления: 2016-06-15; просмотров: 3087;

Похожие статьи:

Дыхание, его основные этапы. Механизмы внешнего дыхания. Биомеханика вдоха и выдоха.

Зависимость «поток—объем» в легких. Давление в дыхательных путях при выдохе

В легких большинство дыхательных путей представляют собой эластичные трубки, за исключением трахеи и бронхов, стенки которых «укреплены» хрящевой тканью. Бронхиолы имеют высокоэластичные стенки, и диаметр их просвета может изменяться пассивно во время дыхательных движений. В обычных физиологических условиях при вдохе (как спокойном, так и глубоком) растяжение легочной ткани вызывает растяжение стенки мелких дыхательных путей. Согласно закону Пуазейля, незначительное увеличение радиуса дыхательных путей резко снижает в них сопротивление потоку воздуха. Поэтому при вдохе сопротивление дыхательных путей потоку воздуха не оказывает существенного влияния на силу сокращения дыхательных мышц. Напротив, при выдохе, особенно при глубоком и усиленном (форсированном) выдохе, диаметр мелких дыхательных путей уменьшается, что вызывает значительное увеличение сопротивления потоку воздуха в них. Влияние объема легких при выдохе на поток воздуха в дыхательных путях количественно характеризуется зависимостью «поток—объем». В клинической физиологии дыхания оценка этой зависимости является основным критерием типа и степени нарушения функции дыхательных путей.

Рис. 10.9. Давление в дыхательных путях при выдохе.Вертикальными стрелками показаны величины давления, возникающие в дыхательных путях под влиянием комплайенса легких и грудной клетки. Горизонтальными стрелками в области дыхательных путей показано, что давление, оказываемое на стенки дыхательных путей, может увеличивать их просвет при спокойном выдохе (а) либо уменьшать их диаметр при глубоком выдохе (б) в том участке общей площади поперечного сечения мелких дыхательных путей, где сравниваются величины внутриплеврального и альвол и давления в дыхательных путях (эквипотенциальная точка — ЭПТ). Р —давление (см водн. ст.), РА — давление в альвеолах.

Зависимость «поток—объем» следующим образом характеризует влияние большого объема воздуха в легких на экспираторный поток воздуха в дыхательных путях (рис. 10.9). В момент, предшествующий началу выдоха, после глубокой инспирации в дыхательных путях отсутствует поток воздуха, а внутриплевральное давление равно —10 см водн. ст. С началом форсированной экспирации внутриплевральное давление возрастает примерно до +30 см водн. ст. относительно атмосферного давления, вызывая уменьшение радиуса как альвеол, так и мелких дыхательных путей. В этих условиях давление газов внутри альвеол становится выше, чем в плевральной полости, благодаря действию на стенки альвеол эластической тяги легких. В результате поток воздуха выходит из альвеолярного пространства по дыхательным путям во внешнюю среду по градиенту давления, который постепенно уменьшается в дыхательных путях по мере приближения к трахее. Спадению эластичных стенок бронхиол препятствует градиент давления воздуха между дыхательными путями и внутриплевральным давлением. Однако в некоторой точке дыхательных путей (как правило, в области бронхиол) этот градиент давления становится равным нулю (эквипотенциальная точка давления) и стенки дыхательных путей могут частично или полностью спадаться. В этих условиях продвижение воздуха по дыхательным путям может обеспечиваться только за счет увеличения силы сокращения (работы) внутренних межреберных мышц и мышц живота.

Снижение эластической тяги легких, например при эмфиземе легких, вызывает смещение ближе к альвеолярному пространству эквипотенциальной точки давления в дыхательных путях при выдохе, и, таким образом, блокируется выход воздуха непосредственно из альвеол. Дыхательные шумы, которые возникают в легких у больных, обусловлены прохождением воздуха через спавшиеся мелкие дыхательные пути. Увеличение экспираторного усилия у таких пациентов повышает риск спадения мелких дыхательных путей и еще больше затрудняет выдох. При бронхиальной астме у пациентов дыхательные пути уменьшают свой просвет в результате сокращения гладких мышц стенки бронхиол. В этом случае увеличение сопротивления потоку воздуха в мелких дыхательных путях вызывает рост градиента давления вдоль дыхательных путей при вдохе и смещает эквипотенциальную точку ближе к альвеолярному пространству, вызывая коллапс дыхательных путей при выдохе. Усиление сокращения экспираторных мышц в фазу выдоха еще больше затрудняет выдох у пациентов вследствие уменьшения просвета мелких дыхательных путей.

Внимание, только СЕГОДНЯ!

Оставьте комментарий