Включения цитоплазмы и их значение

Включения — это непостоянные (необязательные) структурные элементы цитоплазмы.

Они заметны при световой микроскопии при общих методах окрашивания, иногда при малом и среднем увеличении, а часть из них можно выявить лишь специальными (гистохимическими, иммунологическими) методами или при электронной микроскопии. В зависимости от активности клетки, гормональных и метаболических влияний, особенностей дифференцировки, возраста, действия разнообразных факторов внешней среды в клетках можно обнаружить большое разнообразие включений по составу и количеству.

Включения указывают на особенности метаболизма, дифференцировки, функциональной активности клеток. Много включений появляется при дистрофических нарушениях в клетке, что сопровождается изменениями в ее жизнедеятельности вплоть до гибели. Иногда содержимое включений не только показатель функции, но основание для названия клетки: пигментные клетки — меланоциты; эозинофильные, базофильные и нейтрофильные гранулоциты крови и др.

При всем многообразии включений их можно объединить по их функциональному назначению.

Секреторные включения. Представляют собой секреторные гранулы, которые выделяются из клетки путем экзоцитоза. По химическому составу их подразделяют на белковые (серозные), жировые (липидные, или липосомы), слизистые (содержат мукополисахариды) и др. Количество включений зависит от функциональной активности клетки, стадии секреторного цикла, степени зрелости клетки. Особенно много гранул в дифференцированных, функционально активных клетках в фазу накопления секреторного цикла.

Секреторные включения образуются в комплексе Гольджи. Перед этим они проходят стадию синтеза в гр. или глад. ЭПС, реже это происходит в других структурах.

Секреторные белковые включения разнообразны по своим размерам, распределению в цитоплазме, электронной плотности. Они окружены клеточной мембраной. Полипептидные цепочки содержимого секреторных включений синтезируются в гр. ЭПС, а созревают в комплексе Гольджи. В связи с этим у клеток, синтезирующих секреторные белки, хорошо развиты данные органеллы, крупное ядро и ядрышки. Однако если клетка прекращает синтез включений, их накопление сопровождается инволюцией гр. ЭПС и комплекса Гольджи.

В экзокринных железах секреторные включения преобладают в апикальной части клетки, предполагая выведение секрета во внешнюю среду. Секреторные включения эндокринных желез концентрируются вблизи кровеносных сосудов или равномерно распределены в цитоплазме.

Слизистые секреторные включения находятся в основном в клетках слизистых секреторных желез. Примером одноклеточных секреторных желез служат бокаловидные клетки тонкой кишки. При световой микроскопии с помощью ШИК-реакции слизь хорошо видна в крупных вакуолях.

Секреторные включения, содержащие жиры (липосомы), имеются в цитоплазме сальных желез и эндокринных клеток, синтезирующих стероидные гормоны (производные холестерина). Стероидные гормоны — это мужские и женские половые гормоны, гормоны стресса (глюкокортикоиды) и гормон, контролирующий содержание ионов натрия в организме (альдостерон). В этих клетках хорошо развита глад, и гр. ЭПС, комплекс Гольджи, много митохондрий. Митохондрии эндокриноцитов участвуют в синтезе стероидных гормонов и имеют специфические особенности строения. Это крупные митохондрии с мультивезикулярными (трубчатыми) кристами.

Также выделяют секреторные включения, содержащие производные аминокислот и других аминов: норадреналин и адреналин, серотонин (мелатонин) и др.

Разнообразен состав секреторных включений в тучной клетке (лаброците) и базофильном гранулоците (базофиле). Эти клетки содержат многочисленные крупные секреторные включения, окрашивающиеся основными красителями и нередко изменяющие их оттенок. Такая способность изменять цвет красителя называется метахромазией. При электронной микроскопии видно, что в лаброцитах и гранулоцитах много крупных гранул округлой формы, различной электронной плотности.

Количество включений зависит от стадии секреторного цикла. Максимально их количество на стадии накопления секрета, а на других стадиях они могут отсутствовать или их концентрация в клетке минимальна.

Трофические включения. Это структуры, в которых клетки и организм в целом запасают питательные вещества, необходимые в условиях энергетического дефицита, недостатка структурных молекул (при голодании). Примером трофических включений служат гранулы с гликогеном (печеночные клетки, мышечные клетки и симпласты), липидные включения в жировых и других клетках.

Трофические включения гликогена представляют собой мелкие, неправильной формы гранулы, которые можно обнаружить при электронной микроскопии, а также при световой микроскопии, используя специальные методы окрашивания. Гликоген при расщеплении превращается в глюкозу, которую используют клетка и организм в целом в условиях ее дефицита.

Липидные включения в норме накапливаются в жировой ткани (белом или буром жире). В липоците белого жира включения сливаются в гигантскую каплю, которая занимает всю центральную часть клетки. Такие клетки приобретают округлую форму, большие размеры. Ядра уплощены и смещены на периферию, органелл немного. В липоцитах бурого жира включения не сливаются в одну каплю, ядра лежат центрально, много митохондрий, развиты комплекс Гольджи и глад. ЭПС.

При переходе на жировой обмен разрушение липидов в жировых тканях поддерживает энергетические потребности организма. Липидные включения легче разрушаются в буром жире, чем в белом. Избыточное накопление липидов в жировой ткани называют ожирением.

Трофические липидные капли могут накапливаться вне жировых клеток: в гепатоцитах, скелетных и сердечных миоцитах, канальцевом аппарате почек и др. Большое накопление таких включений, которое носит обратимый характер и не нарушает функцию клетки, называется жировой инфильтрацией. В случае, когда такое накопление ведет к повреждению клетки, это явление называют жировой дистрофией. Жировая дистрофия стенки артерии — атеросклероз.

Пигментные включения. Этот тип включений придает окраску клеткам; обеспечивает защитную функцию, например, гранулы меланина в пигментных клетках кожи предохраняют от солнечных ожогов. Пигментные включения могут состоять из продуктов жизнедеятельности клетки: гранулы с липофусцином в нейронах, гемосидерин в макрофагах.

Пигментные клетки — меланоциты у низкоорганизованных позвоночных встречаются во многих органах, придавая животным разнообразную окраску. Форма клеток также различная, но в основном многоотростчатая.

У млекопитающих и человека меланоциты встречаются в основном в эпителии. В многослойном эпителии они лежат в базальном слое, а их отростки направляются к шиповатому слою. Пигмент включений меланоцитов — меланин является производным аминокислоты тирозина. Меланин накапливается в многочисленных включениях, располагающихся в теле и отростках клетки. Часть включений выделяется и захватывается соседними клетками. Если клетки не способны вырабатывать меланин, то это ведет к альбинизму.

Экскреторные включения. Это включения веществ, захватываемых клеткой из внутренней среды и выводимых из организма: токсические вещества, продукты метаболизма, инородные структуры. Нередко экскреторные включения встречаются в эпителии канальцев почки, в первую очередь в проксимальных. Проксимальные канальцы выводят ненужные организму вещества, которые не могут быть отфильтрованы через клубочковый аппарат.

Случайные включения. Характерны для фагоцитов, захватывающих чужеродные для организма структуры (частички пыли, бактерии и вирусы), плохо перевариваемые и неперевариваемые макромолекулярные органические и неорганические комплексы. Наиболее часто подобные включения обнаруживают в специализированных клетках, осуществляющих фагоцитоз, — нейтрофильных лейкоцитах и макрофагах.

Минеральные включения. Преимущественно это нерастворимые соли кальция (карбонаты, фосфаты). Они образуются при пониженной активности органа, гипотрофии и атрофии. Нередко минеральные включения (соли кальция) обнаруживают в матриксе митохондрий, это связано с высоким содержанием этого иона и изменением метаболизма в органелле.

Включения при патологии, могут накапливаться в избыточном количестве и вести к нарушению структуры и функции клетки (дистрофии). Дистрофия обусловлена болезнями накопления, связанными с недостаточной активностью лизосом и/или избыточным синтезом каких-либо веществ (жировая дистрофия печени, дистрофия нейронов, при накоплении большого количества гранул с липофусцином, гликогеноз печени и мышц и др.). Накапливаться могут как обычные для клетки вещества (гликоген в гепатоцитах), так и вещества, в норме в клетке не встречающиеся (амилоид).

Большинство включений отделено от матрикса цитоплазмы мембраной (секреторные включения, жировые трофические включения и др.). Однако есть и включения, которые соприкасаются с содержимым гиалоплазмы (гликоген, некоторые минеральные включения).

Происхождение включений разнообразно и зависит от их содержимого. Например, основная масса секреторных и трофических включений формируется в комплексе Гольджи или в ЭПС, а случайные включения, гранулы гемосидерина — продукты неполного переваривания и фагоцитоза.

Утилизация и удаление включений из клетки зависят от природы самого включения. Секреторные включения выводятся из клетки путем экзоцитоза; гликоген и липиды расщепляются ферментами клетки и во внеклеточную среду выводятся в виде продуктов метаболизма (глюкозы, глицерина, жирных кислот); меланин выделяет пигментная клетка, затем его захватывает и разрушает клетка Лангерганса.

Таким образом, включения представляют собой разные по происхождению, функциональному назначению и морфологии структуры. Их число, вид могут быть показателями особенностей дифференцировки и функционального состояния клеток.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Google+

Одноклассники

Цитоплазма: гиалоплазма, цитоскелет, органоиды, включения

Предыдущая12345678910111213141516Следующая

КЛЕТКА

Оболочка клетки Внутреннее содержимое клетки

Цитоплазма Ядро

     
   
 

Органоиды Гиалоплазма Включения

Специального Общего -Трофические — Нуклеолемма

назначения назначения -Секреторные — Ядерный сок

— реснички -Экскреторные — Хроматин

— жгутики -Пигментные — Ядрышко

немембранного строения мембранного строения

одномембранные двумембранные

-рибосомы -комплекс Гольджи -митохондрии

-центросома -ЭПС -пластиды

-лизосомы

-вакуоли растений

Цитоплазма представлена гиалоплазмой или основным веществом, в которой располагаются органоиды и включения.

Гиалоплазма – это полужидкая часть цитоплазмы, представляет собой коллоидный водный раствор белков, углеводов, нуклеиновых кислот и других веществ. Гиалоплазма содержит катионы и анионы. Основное вещество составляет около половины объема клетки, заполняет пространство между плазмолеммой, ядерной оболочкой, органоидами. В живых клетках гиалоплазма находится в постоянном круговом движении. В ней располагаются микротрубочки, микрофиламенты и промежуточные филаменты, которые вместе с микротрабекулярной системой (тонкими белковыми нитями, расположенными по всей цитоплазме) образуют цитоскелет клетки. Цитоскелет придает клетке форму, а также обеспечивают движение клеток и внутриклеточное перемещение органоидов.

Двигательные процессы эукариотических клеток обеспечиваются опорно-двигательной системой, образованной микрофиламентами, микротрубочками и промежуточными филаментами

Микрофиламенты – тонкие нити, образованные белком актином, имеющие диаметр около 6 нм. Встречаются по всей цитоплазме, обеспечивают: а) движение гиалоплазмы, б) образование перетяжки при делении клеток, в) формирование ложноножек.

Микротрубочки – тонкие полые трубочки диаметром около 25 нм, образованные белком тубулином. Встречаются во всех эукариотических клетках, обеспечивают: а) поддержание формы клеток, б) перемещение органоидов клетки, в) образование веретена деления и расхождение хромосом при митозе.

Включения цитоплазмы клетки: понятие, классификация, значение.

Организацию микротрубочек в клетке выполняет клеточный центр.

Промежуточные филаменты имеют диаметр около 10 нм и занимают промежуточное место между микрофиламентами и микротрубочками. В клетках разных тканей они образованы различными фибриллярными белками, например, в эпидермисе они образованы кератином. Промежуточные филаменты выполняют в клетке опорную функцию, обеспечивая поддержание формы клеток.

Функции гиалоплазмы:

1) объединяет все внутриклеточные структуры и обеспечивает их взаимодействие друг с другом;

2) является внутренней средой клетки, где протекают биохимические реакции (реакции гликолиза, синтез нуклеотидов, аминокислот, жирных кислот);

3) обеспечивает эластичность, вязкость, внутреннее движение цитоплазмы.

Органоиды – это постоянные структурные компоненты клетки, выполняющие определенные функции. Органоиды делятся на две группы:

1) органоиды общего назначения, присутствующие в большинстве клеток,

2) органоиды специального назначения, встречающиеся в специализированных клетках (реснички, жгутики, миофибриллы, пульсирующие вакуоли и др.).

Среди органоидов общего назначения выделяют: органоиды, имеющие мембранное строение, и органоиды, имеющие немембранное строение.

Предыдущая12345678910111213141516Следующая

Date: 2015-04-23; view: 349; Нарушение авторских прав

Понравилась страница? Лайкни для друзей:

Внутренняя среда клетки

Внутри клетки находится цитоплазма. Она состоит из жидкой части – гиалоплазмы (матрикса), органелл и цитоплазматических включений.

Гиалоплазма

Гиалоплазма – основное вещество цитоплазмы, заполняет все пространство между плазматической мембраной, оболочкой ядра и другими внутриклеточными структурами. Гиалоплазму можно рассматривать как сложную коллоидную систему, способную существовать в двух состояниях: золеобразном (жидком) и гелеобразном, которые взаимно переходят одно в другое. В процессе этих переходов осуществляется определенная работа, затрачивается энергия. Гиалоплазма лишена какой-либо определенной организации. Химический состав гиалоплазмы: вода (90 %), минеральные ионы, белки (ферменты гликолиза, обмена сахаров, азотистых оснований, белков и липидов). Некоторые белки цитоплазмы образуют субъединицы, дающие начало таким органеллам, как центриоли, микрофиламенты.

Функции гиалоплазмы:

1) образование истинной внутренней среды клетки, которая объединяет все органеллы и обеспечивает их взаимодействие;

2) поддержание определенной структуры и формы клетки, создание опоры для внутреннего расположения органелл;

3) обеспечение внутриклеточного перемещения веществ и структур;

4) обеспечение адекватного обмена веществ как внутри самой клетки, так и с внешней средой.

Включения

Это относительно непостоянные компоненты цитоплазмы. Среди них выделяют:

1) запасные питательные вещества, которые используются самой клеткой в периоды недостаточного поступления питательных веществ извне (при клеточном голоде), – капли жира, гранулы крахмала или гликогена;

2) продукты, которые подлежат выделению из клетки, например, гранулы зрелого секрета в секреторных клетках (молоко в лактоцитах молочных желез);

3) балластные вещества некоторых клеток, которые не выполняют какой-либо конкретной функции (некоторые пигменты, например, липофусцин стареющих клеток).

Метаболизм

Материальная сущность жизни проявляется, прежде всего, в непрерывном обмене веществ и энергии, который происходит между живой системой (клеткой, организмом, биоценозом) и окружающей его внешней средой. В этом смысле биологические системы являются открытыми.

Разные организмы потребляют разные виды энергии, в связи с чем их делят на автотрофные и гетеротрофные.

Автотрофные организмы (самопитающиеся) способны поглощать энергию неживой природы. Прежде всего, это зеленые растения, а также бурые и красные водоросли, использующие солнечный свет для процесса фотосинтеза – образования органического вещества глюкозы из неорганических воды и углекислого газа. К автотрофам относятся также сине-зеленые водоросли (цианеи) и некоторые бактерии, способные к реакциям хемосинтеза – синтеза органических веществ за счет энергии простых химических реакций. При этом первичная энергия (солнечная или химическая) преобразуется в энергию химических связей сложных органических молекул, так что автотрофы как бы сами создают себе пищу.

Гетеротрофные организмы (питающиеся за счет других) – человек, все животные, грибы, а также многие бактерии, – получают пищу в виде готовых органических веществ, произведенных автотрофами, в основном растениями. В составе этой пищи они получают и энергию, заключенную в химических связях.

Если органическое вещество пищи расщепить на более простые вещества, освобождается энергия. По существу гетеротрофы получают ту же солнечную энергию, но преобразованную зелеными растениями в химическую. Отсюда ясна огромная роль растительных организмов как посредника в энергетическом обеспечении животных и человека.

Включения цитоплазмы

Избавиться от этой зависимости, получать какую-либо энергию прямо из неживой природы человечество еще не научилось. И хотя академик В. И. Вернадский выдвигал такую научную задачу, дальше фантастических произведений дело не продвинулось и вряд ли продвинется в обозримом будущем. Поэтому для биологов всего мира одной из приоритетных задач остается понять во всех деталях механизм фотосинтеза, чтобы максимально интенсифицировать его в растениях и по возможности воспроизвести в искусственных условиях.

Структура АТФ и её изменение в ходе метаболизма

Реакции энергетического обмена. Независимо от исходного источника энергии все организмы, как автотрофы, так и гетеротрофы, сначала переводят энергию в удобное для дальнейшего использования состояние. Это так называемые макроэргические (богатые энергией) связи в молекулах аденозинтрифосфорной кислоты – АТФ. Образуются молекулы АТФ из аденозиндифосфорной (АДФ) или аденозинмонофосфорной (АМФ) кислоты и свободных молекул фосфорной кислоты, но при непременном поглощении внешней энергии – солнечной или химической (эндотермическая реакция). Количество энергии, запасенное в макроэргической связи, на порядок больше, чем в обычных связях, например, внутри молекулы глюкозы, поэтому в составе АТФ энергию удобно хранить и транспортировать в пределах клетки.

В местах потребления этой энергии АТФ распадается на АДФ и фосфат (при крайней необходимости даже на АМФ и два фосфата), а освобожденная энергия расходуется на ту или иную работу – синтез глюкозы в хлоропластах растительных клеток, синтез белков и других макромолекул, транспорт веществ в клетку и из клетки, движение и др. АДФ (АМФ) и фосфат могут снова соединиться, захватив очередную порцию внешней энергии, а потом разрушиться и отдать энергию в работу. Циклические преобразования АТФ многократно повторяются.

Таким образом, АТФ выступает в качестве универсального переносчика энергии внутри клетки, своеобразной разменной монетой в энергетических платежах за внутриклеточные процессы.

Пути анаболизма и катаболизма в клетке

Проблема клеточной энергетики сводится к пониманию первичных источников энергии и механизмов ее перевода в АТФ. В общем виде ситуация такова: у фотосинтетических аутотрофных организмов синтез АТФ из АДФ и фосфата генерируется солнечной энергией, у гетеротрофов – энергией от окисления пищевых продуктов.

Таким образом, растениям для синтеза АТФ нужен свет, животным и человеку нужна органическая пища.

Свет является первичным источником энергии, он используется в реакциях фотосинтезау растений. По конечной сути реакция фотосинтеза довольно проста:

6СО2 + 6H2O + энергия света → С6Н12О6 + 6О2↑

С помощью энергии света из углекислого газа и воды синтезируется 6-углеродное органическое вещество — глюкоза (моносахарид), и в качестве «лишнего» продукта образуется кислород, который уходит в атмосферу. На самом деле эта реакция более сложная, она состоит из двух стадий: световой и темновой. Сначала на свету с помощью особого Mg-содержащего пигмента хлорофилла вода расщепляется на кислород и водород, а энергия водорода передается на синтез АТФ. Только потом, в темновой стадии, водород соединяется с углекислым газом и образуется глюкоза. При этом часть АТФ расщепляется, отдавая энергию глюкозе.

Глюкоза вместе с минеральными веществами, поступающими в растение из почвы (соли азота, серы, фосфора, железа, магния, кальция, калия, натрия и др.), становится основой для более сложных синтезов – образуются полисахариды, липиды, белки, нуклеиновые кислоты, из которых строятся рабочие структуры клеток. Но и эти синтезы, как и синтез глюкозы, требуют энергетических затрат. Прямое использование света здесь невозможно (эволюция не создала таких энергетических переходов), поэтому некоторая часть глюкозы тратится как энергетический субстрат, то есть глюкоза становится вторичным источником энергии. Глюкоза расщепляется и отдает энергию – сначала на синтез АТФ, а после расщепления АТФ – на биосинтезы макромолекул.

Значительная часть АТФ, как уже сказано выше, расходуется на другую работу – транспорт веществ, движение клетки и др. Наиболее эффективно глюкоза расщепляется с участием кислорода:

C6H12O6 + 6O2 → 6CO2 + 6H2O + энергия

С химической точки зрения это полное окисление – «горение» глюкозы. В живой клетке

«горение» происходит замедленно, поэтапно, так что энергия выделяется малыми порциями, и большая ее часть (около 55 %) используется на синтез АТФ, остальная рассеивается в виде тепла. Полное окисление одной молекулы глюкозы обеспечивает синтез 38 молекул АТФ. Поскольку кислород для окисления мы вдыхаем с атмосферным воздухом, то и на химическом уровне окисление глюкозы кислородом называют дыханием. Главная черта растительной автотрофной клетки – способность к фотосинтезу, который обеспечивает первый этап построения органического вещества, в форме глюкозы. Но и дыхание в полной мере присуще растениям, так как именно этот процесс извлекает энергию из глюкозы (а также из жиров и лишних белков), переводит ее временно в АТФ и далее в сложные макромолекулы. Эта же схема, но с изъятием реакции фотосинтеза, соответствует и гетеротрофному метаболизму животных клеток. В этом случае глюкоза (а также другие углеводы, жиры, трофические белки и др.) поступают в клетку извне в готовом виде. Часть этих материалов идет на дыхание (в топку, для извлечения энергии через синтез АТФ), а часть, после некоторой переделки, на синтез новых макромолекул как строительный материал. Таким образом, пища у гетеротрофов (то есть и у нас с вами) имеет двойное назначение – энергетическое и пластическое (строительное).

Между пластическим обменом (анаболизмом) и энергетическим (катаболизмом) существует неразрывноеединство. Энергия поглощается из внешней среды, преобразуется в АТФ, прежде всего, для осуществления строительных процессов, для построения живой материи. А построение живой материи, то есть синтез макромолекул из простых неорганических веществ, возможен только с поглощением внешней энергии.

Дата добавления: 2017-09-01; просмотров: 1030;

Похожие статьи:

Включения цитоплазмы клетки: понятие, классификация, значение.

Включения – непостоянные и необязательные компоненты клеток. Могут содержать разнообразные химические вещества.

Включения делятся на:

— трофические (запас питательных веществ),Трофические включения. Это структуры, в которых клетки и организм в целом запасают питательные вещества, необходимые в условиях энергетического дефицита, недостатка структурных молекул (при голодании). Примером трофических включений служат гранулы с гликогеном (печеночные клетки, мышечные клетки и симпласты), липидные включения в жировых и других клетках.

— секреторные (вещества, предназначенные для секреции),Секреторные включения. Представляют собой секреторные гранулы, которые выделяются из клетки путем экзоцитоза. По химическому составу их подразделяют на белковые (серозные), жировые (липидные, или липосомы), слизистые (содержат мукополисахариды) и др. Количество включений зависит от функциональной активности клетки, стадии секреторного цикла, степени зрелости клетки. Особенно много гранул в дифференцированных, функционально активных клетках в фазу накопления секреторного цикла.

— экскреторные (продукты метаболизма, предназначенные для выведения из клетки),Экскреторные включения. Это включения веществ, захватываемых клеткой из внутренней среды и выводимых из организма: токсические вещества, продукты метаболизма, инородные структуры. Нередко экскреторные включения встречаются в эпителии канальцев почки, в первую очередь в проксимальных. Проксимальные канальцы выводят ненужные организму вещества, которые не могут быть отфильтрованы через клубочковый аппарат.

— пигментные (пигменты).Пигментные включения. Этот тип включений придает окраску клеткам; обеспечивает защитную функцию, например, гранулы меланина в пигментных клетках кожи предохраняют от солнечных ожогов. Пигментные включения могут состоять из продуктов жизнедеятельности клетки: гранулы с липофусцином в нейронах, гемосидерин в макрофагах.

Понятие о жизненном цикле клетки: стадии и их морфофункциональная характеристика. Особенности жизненного цикла у различных видов клеток. Регуляция жизненного цикла: понятие, классификация факторов, регулирующих пролиферативную активность.

В жизненном цикле любой клетки различают 5 периодов: фаза роста и размножения в недифференцированном состоянии, фаза дифференцировки, фаза нормальной активности, фаза старения и терминальная фаза дезинтеграции и смерти.

Рост и размножение. Сразу же после своего «появления на свет» в момент деления материнской клетки дочерняя клетка начинает вырабатывать белки в соответствии с типом, предписанным ей генетическим кодом. Клетка растет, сохраняя при этом недифференцированный характер эмбриональной клетки — это период роста.

Дифференцировка. Возможен и другой тип развития. После начального роста и размножения клетка начинает дифференцироваться, т.е. морфологически и функционально специализироваться. Процесс дифференцировки, обусловленный одновременно действием генов и влиянием внешней среды, вначале в течение некоторого времени обратим. Его можно приостановить, воздействуя различными факторами.

Процесс дифференцировки — это развитие из однородного клеточного материала резко отличающихся друг от друга клеток и тканей различных органов. Дифференцированные клетки характеризуются своими морфологическими и особыми функциональными свойствами. Эти свойства обусловлены структурными и энзиматическими особенностями их специфических белков. Некоторые эмбриональные дифференцировки клеток и даже органов зависят от свойства клеточных мембран; свойства эти связаны со структурными и функциональными характеристиками белка. Таким образом, в основе всякой дифференцировки лежат структурные изменения белка, дифферен-цировка представляет собой процесс направленного изменения.

Гибель клетки— постепенный процесс: вначале в клетке возникают обратимые повреждения, совместимые с жизнью; затем повреждения приобретают необратимый характер, но некоторые функции клетки сохраняются, и, наконец, наступает полное прекращение всех функций.

Уровни и формы организации живого. Определение ткани. Эволюция тканей. Морфофункциональная классификация тканей по Келликеру и Лейдигу.

II. ЦИТОПЛАЗМА. Органеллы. Включения.

Структурные элементы тканей. Понятие о стволовых клетках, популяциях клеток и дифферонах. Классификация тканей согласно теории дифферонного строения.

Системно-структурные уровни организации многообразных форм живого достаточно многочисленны: молекулярный, субклеточный, клеточный, органотканевый, организменный, популяционный, видовой, биоценотический, биогеоценотический, биосферный. Могут быть определены и другие уровни. Но во всем многообразии уровней выделяются некоторые основные. Критерием выделения основных уровней выступают специфические дискретные структуры и фундаментальные биологические взаимодействия. На основании этих критериев достаточно четко выделяются следующие уровни организации живого: молекулярно-генетический, организменный, популяционно-видовой, биогеоценотический.

Ткань — это возникшая в эволюции частная система организма, которая состоит из одного или нескольких дифферонов клеток и их производных и обладает специфическими функциями благодаря кооперативной деятельности всех её элементов.
Все ткани делятся на 4 морфофункциональные группы: I. эпителиальные ткани (куда относятся и железы); II.ткани внутренней среды организма — кровь и кроветворные ткани, соединительные ткани; III. мышечные ткани, IV. нервная ткань. Внутри этих групп (кроме нервной ткани) различают те или иные виды тканей. Например, мышечные ткани подразделяются, в основном, на 3 вида: скелетную, сердечную и гладкую мышечные ткани. Ещё более сложными являются группы эпителиальных и соединительных тканей. Ткани, принадлежащие к одной группе, могут иметь разное происхождение. Например, эпителиальные ткани происходят из всех трёх зародышевых листков. Таким образом, тканевая группа — это совокупность тканей, имеющих сходные морфофункциональные свойства независимо от источника их развития. В образовании ткани могут принимать участие следующие элементы: клетки, производные клеток (симпласты, синцитии), постклеточные структуры (такие, как эритроциты и тромбоциты), межклеточное вещество (волокна и матрикс). Каждая ткань отличается определённым составом таких элементов. Например, скелетная мышечная ткань — это лишь симпласты (мышечные волокна. Этот состав обуславливает специфические функции каждой ткани. Причём, выполняя эти функции, элементы тканей обычно тесно взаимодействуют между собой, образуя единое целое.
морфофункциональная классификация Келликера и Лейдига, созданная ими в середине пршлого столетия. Согласно этой классификации

различают следующие 4 группы тканей:

1.Эпителиальные или покровные ткани,объединяющиеся на основании морфологических признаков.

2.Ткани внутренней среды, включающие в себя кровь, лимфу, костную, хрящевую и собственно соединительную ткани. Все эти ткани объединяются в одну группу по двум признакам. по общности строения (все они состоят из клеток и межклеточного вещества) и происхождения (все они развиваются из мезенхимы).

3.Мышечные ткани (гладкая, поперечно-полосатая, сердечная, миоэпителиальные клетки и мионевральные элементы). Ткани этой группы обладают одной функцией – сократимостью, но происхождение и строение их разное.

4.Нервная ткань. Эта ткань представлена различными гистологическими элементами клетками и глией. Единственным общим признаком для нервных клеток и глиальных элементов является их постоянное совместное расположение, т.е. топографический признак. Нервная ткань обеспечивает интегративную функцию, т.е. обеспечивает единство организма.

Живучесть этой классификации объясняется тем, что она отражает различные связи организма с внешней средой, а также внутри самого организма.

СТРУКТУРНЫЕ ЭЛЕМЕНТЫ ТКАНЕЙ:

Ткани состоят из клеток и межклеточного вещества. Клетки находятся во взаимодействии друг с другом и межклеточным веществом. Это обеспечивает функционирование ткани как единой системы. В состав органов входят различные ткани (одни образуют строму, другие – паренхиму). Каждая ткань имеет или имела в эмбриогенезе стволовые клетки.

СИМПЛАСТ –неклеточная многоядерная структура. Два способа образования: путем объединения клеток, между которыми исчезают клеточные границы; в результате деления ядер без цитотомии (образования перетяжки). Например скелетная мышечная ткань.

МЕЖКЛЕТОЧНОЕ ВЕЩЕСТВО –продукт жизнедеятельности клеток. Состоит из двух частей: аморфное (основное) вещество (гелеозоль, протеогликаны, ГАГ, гликопротеиды) и волокна (коллагеновые определяют прочность на разрыв, эластические – прочность на растяжение, ретикулярные – коллаген 3 типа)

Теории дифференного строения тканей. Согласно этой теории все ткани нашего организма состоят из одного или нескольких дифферонов. Клеточный дифферон – это совокупность клеточных форм, составляющих линию дифференцировки. Клеточный дифферон образуют клетки возрастающей степени зрелости одного гистогенетического ряда. Исходной формой линии клеточной дифференцировки (клеточного дифферона) служат стволовые клетки. Все ткани нашего организма имеют или имели в эмбриональном периоде стволовые клетки. Стволовые клетки являются малодифференцированными, т.е. они не прошли путь дифференцировки до конца.

При делении стволовой клетки она стоит перед выбором остаться стволовой клеткой, какой была родительская, или встать на путь, ведущий к полной дифференцировке. Установлено, что стволовая клетка может делиться симметрично и ассимметрично. При симметричном делении образуются из 1 стволовой клетки две новых стволовых клеток Следующие стадии гистогенетического ряда образуют субстволовые (коммитированные) клетки-предшественники, которые могут дифференцироваться только в одном направлении. Дифферон заканчивается стадией зрелых функционирующих клеток. Различают основные (полные) и неполные диффероны в составе ткани Условно в составе клеточного дифферона можно выделить начальную камбиальную часть, среднюю дифференцирующуюся часть и конечную – высоко дифференцирующуюся часть, в которых степень пролиферативной активности клеток различна.

Оставьте комментарий