три основных вида РНК: информационная (иРНК), или матричная (мРНК), рибосомная (рРНК), и транспортная (тРНК). Они различаются по величине молекул и функциям. Все типы РНК синтезируются на ДНК при участии ферментов — РНК-полимераз. Информационная РНК составляет 2—3 % всей клеточной РНК, рибосомная — 80—85, транспортная — около 15 %.
иРНК. она считывает наследственную информацию с участка ДНК и в форме скопированной последовательности азотистых оснований переносит ее в рибосомы, где происходит синтез определенного белка. Каждая из молекул иРНК по порядку расположения нуклеотидов и по размеру соответствует гену в ДНК, с которого она была транскрибирована. В среднем иРНК содержит 1500 нуклеотидов (75— 3000). Каждый триплет (три нуклеотида) на иРНК называется кодоном. От кодона зависит, какая аминокислота встанет в данном месте при синтезе белка.
(тРНК) обладает относительно невысокой молекулярной массой порядка 24—29 тыс. Д и содержит в молекуле от 75 до 90 нуклеотидов. До 10 % всех нуклеотидов тРНК приходится на долю минорных оснований, что, по-видимому, защищает ее от действия гидролитических ферментов.Роль тРНК заключается в том, что они переносят аминокислоты к рибосомам и участвуют в процессе синтеза белка. Каждая аминокислота присоединяется к определенной тРНК. Ряд аминокислот обладает более одной тРНК. К настоящему времени обнаружено более 60 тРНК, которые отличаются между собой первичной структурой (последовательностью оснований). Вторичная структура у всех тРНК представлена в виде клеверного листа с двухцепочным стеблем и тремя одноцепочными). На конце одной из цепей находится акцепторный участок — триплет ЦЦА, к аденину которого присоединяется специфическая аминокислота.
(рРНК). Они содержат 120—3100 нуклеотидов. Рибосомная РНК накапливается в ядре, в ядрышках. В ядрышки из цитоплазмы транспортируются рибосомные белки, и там происходит спонтанное образование субчастиц рибосом путем объединения белков с соответствующими рРНК. Субчастицы рибосомы вместе или врозь транспортируются через поры ядерной мембраны в цитоплазму.Рибосомы представляют собой органеллы величиной 20— 30 нм. Они построены из двух субчастиц разного размера и формы. На определенных стадиях белкового синтеза в клетке происходит разделение рибосом на субчастицы. Рибосомная РНК служит как бы каркасом рибосом и способствует первоначальному связыванию иРНК с рибосомой в процессе биосинтеза белка.
Генетический код- свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов.
Свойства: 1) генетический код триплетный (каждая аминокислота кодируется тремя нуклеотидами); 2) неперекрывающийся (соседние триплеты не имеют общих нуклеотидов); 3) вырожденный (за исключением метионина и триптофана все аминокислоты имеют более одного кодона); 4) универсальный (в основном одинаков для всех живых организмов); 5) в кодонах для одной аминокислоты первые два нуклеотида, как правило, одинаковы, а третий варьирует; 6) имеет линейный порядок считывания и характеризуется колине-арностью, т. е. совпадением порядка расположения кодонов в иРНК с порядком расположения аминокислот в синтезирующейся полипептидной цепи.
Дата публикования: 2014-12-08; Прочитано: 11305 | Нарушение авторского права страницы
studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…
Содержание
РНК и ее виды
Рибонуклеи́новая кислота́ (РНК) — одна из трёх основных макромолекул (две другие — ДНК и белки), которые содержатся в клетках всех живых организмов.
Так же, как ДНК (дезоксирибонуклеиновая кислота), РНК состоит из длинной цепи, в которой каждое звено называется нуклеотидом. Каждый нуклеотид состоит из азотистого основания, сахара рибозы и фосфатной группы. Последовательность нуклеотидов позволяет РНК кодировать генетическую информацию. Все клеточные организмы используют РНК (мРНК) для программирования синтеза белков.
РНК
Клеточные РНК образуются в ходе процесса, называемого транскрипцией, то есть синтеза РНК на матрице ДНК, осуществляемого специальными ферментами — РНК-полимеразами. Затем матричные РНК (мРНК) принимают участие в процессе, называемом трансляцией.
Трансляция — это синтез белка на матрице мРНК при участии рибосом. Другие РНК после транскрипции подвергаются химическим модификациям, и после образования вторичной и третичной структур выполняют функции, зависящие от типа РНК.
Для одноцепочечных РНК характерны разнообразные пространственные структуры, в которых часть нуклеотидов одной и той же цепи спарены между собой. Некоторые высокоструктурированные РНК принимают участие в синтезе белка клетки, например, транспортные РНК служат для узнавания кодонов и доставки соответствующих аминокислот к месту синтеза белка, а рибосомные РНК служат структурной и каталитической основой рибосом.
Однако функции РНК в современных клетках не ограничиваются их ролью в трансляции. Так, малые ядерные РНК принимают участие в сплайсинге эукариотических матричных РНК и других процессах.
Помимо того, что молекулы РНК входят в состав некоторых ферментов (например, теломеразы), у отдельных РНК обнаружена собственная ферментативная активность: способность вносить разрывы в другие молекулы РНК или, наоборот, «склеивать» два РНК-фрагмента. Такие РНК называются рибозимами.
Геномы ряда вирусов состоят из РНК, то есть у них она играет роль, которую у высших организмов выполняет ДНК. На основании разнообразия функций РНК в клетке была выдвинута гипотеза, согласно которой РНК — первая молекула, которая была способна к самовоспроизведению в добиологических системах.
Биологическая роль РНК связана с процессом реализации наследственной информации с ДНК при синтезе белка. Информационная РНК является посредником между информацией о структуре белка на ДНК ядра и местом синтеза белковых молекул в цитоплазме на рибосомах. РНК не имеет двойной спирали, она представлена одной полинуклиотидной цепью (за исключением двуцепочечных РНК-содержащих вирусов). Содержание РНК в клетке колеблется в зависимости от вида. Существует три вида РНК: рибосомальная, информационная, транспортная. Все виды синтезируются на молекуле ДНК в ядре путём транскрипции.
Р-РНК — рибосомальная входит в состав рибосом (3000-5000 нуклеотидов) (80% от общей массы РНК клетки). Из неё построен каркас рибосом, участвует в инициации, окончании синтеза и отделения готовых молекул белка от рибосом.
И-РНК — информационная (матричная) несет генетическую информацию, транскрибируемую с ДНК о структуре полипептидной цепи в виде кодонов (триплетов нуклеотидов). Молекула включает от 300 до 3000 нуклеотидов и составляет 3-5%.
Т-РНК — транспортная – обеспечивает транспорт активированных аминокислот к рибосомам (тройной комплекс аминоацил т-РНК синтетаза, аминокислота, АТФ). Имеет вторичную структуру в виде листка клевера, на верхушке которого – антикодон.
Молекула ДНК разделена на участки, содержащие информацию о структуре белка, которые называются генами и неинформативные отрезки спейсеры, которые разделяют гены. Спейсеры бывают различной длины и регулируют транскрипцию соседнего гена. Транскрибируемые спейсеры копируются при транскрипции вместе с геном, и их комплементарные копии появляются на про-и-РНК. Нетранскрибируемые спейсеры — встречаются между генами гистоновых белков ДНК.
Синтез и-РНК идёт с одной нити двуцепочечной молекулы ДНК по принципу комплементарности. и-РНК является копией не всей молекулы ДНК, а только части её — одного гена или группы генов одной функции. Такая группа генов называется оперон. Оперон – единица генетической регуляции. Он включает структурные гены, несущие информацию о структуре белков, регуляторные гены, управляющие работой структурных. К регуляторным генам относят: промотор, оператор, терминатор. Промотор находится в начале каждого оперона. Это посадочная площадка для РНК — полимеразы (специфический носитель нуклеотидов ДНК, которую фермент узнаёт благодаря химическому сродству). Оператор управляет транскрипцией. Терминатор включает стоп-кодоны, заканчивающие синтез и-РНК.
У эукариот структурные гены разделены на экзоны и интроны. Экзоны – участки, несущие информацию, а интроны – не несущие информацию.
При синтезе и-РНК сначала образуются:
1) Первичный транскрипт — длинный предшественник и-РНК с полной информацией с молекулы ДНК (про-и-РНК).
2) Процессинг — укорочение первичного транскрипта путем вырезания неинформативных участков ДНК (интронов).
3) Сплайсинг — сшивание информативных участков и образование зрелой и-РНК.
Транскрипция начинается со стартовой точки молекулы ДНК с участием фермента РНК — полимераза, для эукариот — адениловый нуклеотид. Синтез и-РНК проходит в 4 стадии:
1) Связывание РНК-полимеразы с промотором.
2) Инициация — начало синтеза (первая диэфирная связь между АТФ и ГТФ и вторым нуклеотидом и-РНК.
3) Элонгация- рост цепи и-РНК.
4) Терминация — завершение синтеза и-РНК.
РНК (рибонуклеиновая кислота), так же как и ДНК, относится к нуклеиновым кислотам. Молекулы-полимеры РНК намного меньше, чем у ДНК. Однако в зависимости от типа РНК количество входящих в них нуклеотидов-мономеров различается.
В состав нуклеотида РНК в качестве сахара входит рибоза, в качестве азотистого основания — аденит, гуанин, урацил, цитозин. Урацил по строению и химическим свойствам близок к тимину, который обычен для ДНК. В зрелых молекулах РНК многие азотистые основания модифицированы, поэтому в реальности разновидностей азотистых оснований в составе РНК намного больше.
Рибоза в отличие от дезоксирибозы имеет дополнительную -ОН-группу (гидроксильную). Это обстоятельство позволяет РНК легче вступать в химические реакции.
Главной функцией РНК в клетках живых организмов можно назвать реализацию генетической информации. Именно благодаря разным типам рибонуклеиновой кислоты генетический код считывается (транскрибируется) с ДНК, после чего на его основе синтезируются полипептиды (происходит трансляция). Итак, если ДНК в основном отвечает за хранение и передачу из поколения в поколение генетической информации (основной процесс – репликация), то РНК реализует эту информацию (процессы транскрипции и трансляции). При этом транскрипция происходит на ДНК, так что этот процесс относится к обоим типам нуклеиновых кислот и тогда с этой точки зрения можно сказать, что и ДНК отвечает за реализацию генетической информации.
При более подробном рассмотрении функции РНК намного разнообразнее. Ряд молекул РНК выполняют структурную, каталитическую и другие функции.
Существует так называемая гипотеза РНК-мира, согласно которой вначале в живой природе в качестве носителя генетической информации выступали только молекулы РНК, при этом другие молекулы РНК катализировали различные реакции. Данная гипотеза подтверждена рядом опытов, показывающих возможную эволюцию РНК. На это указывает и то, что ряд вирусов в качестве нуклеиновой кислоты, хранящей генетическую информацию, имеют молекулу РНК.
Согласно гипотезе РНК-мира ДНК появилась позже в процессе естественного отбора как более устойчивая молекула, что важно для хранения генетической информации.
Выделяют три основных типа РНК (кроме них есть и другие): матричная (она же информационная), рибосомальная и транспортная. Обозначаются они соответственно иРНК (или мРНК), рРНК, тРНК.
Информационная РНК (иРНК)
Почти все РНК синтезируются на ДНК в процессе транскрипции. Однако часто транскрипция упоминается как синтез именно информационной РНК (иРНК). Связано это с тем, что последовательность нуклеотидов иРНК в последствии определит последовательность аминокислот синтезируемого в процессе трансляции белка.
Перед транскрипцией нити ДНК расплетаются, и на одной из них с помощью комплекса белков-ферментов синтезируется РНК по принципу комплементарности, так же как это происходит при репликации ДНК. Только напротив аденина ДНК к молекуле РНК присоединяется нуклеотид, содержащий урацил, а не тимин.
На самом деле на ДНК синтезируется не готовая информационная РНК, а ее предшественник — пре-иРНК. Предшественник содержит участки последовательности нуклеотидов, которые не кодируют белок и которые после синтеза пре-иРНК вырезаются при участии малых ядерных и ядрышковых РНК («дополнительные» типы РНК). Эти удаляющиеся участки называются интронами. Остающиеся части иРНК называются экзонами. После удаления интронов экзоны сшиваются между собой. Процесс удаления интронов и сшивания экзонов называется сплайсингом. Усложняющей жизнь особенностью является то, что можно вырезать интроны по-разному, в результате получатся разные готовые иРНК, которые будут служить матрицами для разных белков. Таким образом, вроде бы один ген ДНК может играть роль нескольких генов.
Следует отметить, что у прокариотических организмов сплайсинга не происходит. Обычно их иРНК сразу после синтеза на ДНК готова к трансляции. Бывает, что пока конец молекулы иРНК еще транскрибируется, на ее начале уже сидят рибосомы, синтезирующие белок.
После того как пре-иРНК созревает в информационную РНК и оказывается вне ядра, она становится матрицей для синтеза полипептида. При этом на нее «насаживаются» рибосомы (не сразу, какая-то оказывается первой, другая — второй и т. д.). Каждая синтезирует свою копию белка, т. е. на одной молекуле РНК могут синтезироваться сразу несколько одинаковых белковых молекул (понятно, что каждая будет находиться на своей стадии синтеза).
Рибосома, передвигаясь от начала иРНК к ее концу, считывает по три нуклеотида (хотя вмещает шесть, т.
е. два кодона) и присоединяет соответствующую транспортную РНК (имеющую соответствующий кодону антикодон), к которой присоединена соответствующая аминокислота. После этого с помощью активного центра рибосомы ранее синтезированная часть полипептида, соединенная с предшествующей тРНК, как-бы «пересаживается» (образуется пептидная связь) на аминокислоту, прикрепленную к только что пришедшей тРНК. Таким образом, молекула белка постепенно увеличивается.
Когда молекула информационной РНК становится не нужна, клетка ее разрушает.
Транспортная РНК (тРНК)
Транспортная РНК — это достаточно маленькая (по меркам полимеров) молекула (количество нуклеотидов бывает разным, в среднем около 80-ти), во вторичной структуре имеет форму клеверного листа, в третичной сворачивается в нечто подобное букве Г.
Функция тРНК — присоединение к себе соответствующей своему антикодону аминокислоты. В дальнейшем соединение с рибосомой, находящейся на соответствующем антикодону кодоне иРНК, и «передача» этой аминокислоты. Обобщая, можно сказать, что транспортная РНК переносит (на то она и транспортная) аминокислоты к месту синтеза белка.
Живая природа на Земле использует всего около 20-ти аминокислот для синтеза различных белковых молекул (на самом деле аминокислот куда больше). Но поскольку, согласно генетическому коду, кодонов больше 60-ти, то каждой аминокислоте может соответствовать несколько кодонов (на самом деле какой-то больше, какой-то меньше). Таким образом, разновидностей тРНК больше 20, при этом разные транспортные РНК переносят одинаковые аминокислоты. (Но и тут не так все просто.)
Рибосомная РНК (рРНК)
Рибосомную РНК часто также называют рибосомальной РНК. Это одно и то же.
Рибосомная РНК составляет около 80% всей РНК клетки, так как входит в состав рибосом, коих в клетке бывает достаточно много.
В рибосомах рРНК образует комплексы с белками, выполняет структурную и каталитическую функции.
В состав рибосомы входят несколько разных молекул рРНК, отличающиеся между собой как по длине цепи, вторичной и третичной структуре, выполняемым функциям. Однако их суммарная функция — это реализация процесса трансляции. При этом молекулы рРНК считывают информацию с иРНК и катализируют образование пептидной связи между аминокислотами.
Виды РНК. Строение и функции РНК
Виды РНК
Молекулы РНК в отличие от ДНК являются однонитевыми структурами. Схема построения РНК аналогична ДНК: основу образует сахарно-фосфатный остов, к которому присоединяются азотистые основания.
Рис. 5.16. Строение ДНК и РНК
Различия химического строения заключаются в следующем: дезоксирибоза, присутствующая в ДНК, заменена на молекулу рибозы, а тимин представлен другим пиримидином — урацилом (рис. 5.16, 5.18).
Молекулы РНК в зависимости от выполняемых функций подразделяются на три основных вида: информационные, или матричные (мРНК), транспортные (тРНК) и рибосомальные (рРНК).
В ядре клеток эукариот содержится РНК четвертого вида — гетерогенная ядерная РНК (гяРНК), которая является точной копией соответствующей ДНК.
Функции РНК
— мРНК переносят информацию о структуре белка от ДНК к рибосомам, (т.е. являются матрицей для синтеза белка;
тРНК переносят аминокислоты к рибосомам, специфичность такого переноса обеспечивается тем, что имеется 20 типов тРНК, соответствующих 20 аминокислотам (рис. 5.17);
рРНК образуют в комплексе с белками рибосому, в которой происходит синтез белка;
гяРНК является точным транскриптом ДНК, которая, подвергаясь специфическим изменениям, превращается (созревает) в зрелую мРНК.
Молекулы РНК значительно меньше молекул ДНК. Самой короткой является тРНК, состоящая из 75 нуклеотидов.
Рис. 5.17. Строение транспортной РНК
Рис. 5.18. Сравнение ДНК и РНК
Современные представления о строении гена. Интрон-экзонная структура у эукариот
Элементарной единицей наследственности является ген. Термин «ген» был предложен в 1909 г. В. Иогансеном для обозначения материальной единицы наследственности, выделенной Г. Менделем.
После работ американских генетиков Дж.Бидла и Э.Тейтума геном стали называть участок молекулы ДНК, кодирующий синтез одного белка.
Согласно современным представлениям, ген рассматривается как участок молекулы ДНК, характеризующийся специфической последовательностью нуклеотидов, определяющих аминокислотную последовательность полипептидной цепи какого-либо белка или нуклеотидную последовательность функционирующей молекулы РНК (тРНК, рРНК).
Относительно короткие кодирующие последовательности оснований (экзоны)чередуются в них с длинными некодирующими последовательностями – интронами,которые вырезаются (сплайсинг) в процессе созревания иРНК (процессинге) и не участвуют в процессе трансляции (рис. 5.19).
Размеры генов человека могут колебаться от нескольких десятков пар нуклеотидов (п.н.) до многих тысяч и даже миллионов п.н. Так, самый маленький из известных генов содержит всего 21 п.н., а один из самых крупных генов имеет размер более 2,6 млн п.н.
Рис. 5.19. Строение ДНК эукариот
После того как заканчивается транскрипция, все виды РНК претерпевают созревание РНК — процессинг.Он представленсплайсингом— это процесс удаления участков молекулы РНК, соответствующих интронным последовательностям ДНК. Зрелая мРНК выходит в цитоплазму и становится матрицей для синтеза белка, т.е. переносит информацию о структуре белка от ДНК к рибосомам (рис. 5.19, 5.20).
Последовательность нуклеотидов в рРНК сходна у всех организмов. Вся рРНК находится в цитоплазме, где она образует сложный комплекс с белками, формируя рибосому.
На рибосомах информация, зашифрованная в структуре мРНК, переводится (транслируется) в аминокислотную последовательность, т.е. происходит синтез белка.
Рис. 5.20. Сплайсинг
5.6. Практическое задание
Выполнить самостоятельно задание. Заполнить таблицу 5.1. Сравнить строение, свойства и функции ДНК и РНК
Таблица 5.1.
Сравнение ДНК и РНК
Критерии для сравнения | ДНК | РНК |
Местонахождение в клетке | ||
Местонахождение в ядре | ||
Строение молекулы | ||
Мономеры | ||
Состав нуклеотида | ||
Типы нуклеотидов | ||
Свойства | ||
Функции |
Вопросы теста
2 24. В 24.
1. Молекула РНК содержит азотистые основания:
а) аденин, гуанин, урацил, цитозин
б) цитозин, гуанин, аденин, тимин
в) тимин, урацил, аденин, гуанин
г) аденин, урацил, тимин, цитозин.
2. Молекула АТФ содержит:
а) аденин, дизоксирибозу и три остатка фосфорной кислоты
б) аденин, рибозу и три остатка фосфорной кислоты
в) аденозин, рибозу и три остатка фосфорной кислоты
г) аденозин,дезоксирибозу и три остатка фосфорной кислоты.
3. Хранителем наследственности в клетке являются молекулы ДНК, так как в них закодирована информация о
а) составе полисахаридов
б) структуре молекул липидов
в) первичной структуре молекул белка
г) строении аминокислот
4. В реализации наследственной информации принимают участие молекулы нуклеиновых кислот, обеспечивая
а) синтез углеводов
б) окисление белков
в) окисление углеводов
г) синтез белков
5. С помощью молекул иРНК осуществляется передача наследственной информации
а) из ядра к митохондрии
б) из одной клетки в другую
в) из ядра к рибосоме
г) от родителей потомству
6. Молекулы ДНК
а) переносят информацию о строении белка к рибосомам
б) переносят информацию о строении белка в цитоплазму
в) доставляют к рибосомам аминокислоты
г) содержат наследственную информацию о первичной структуре белка
7. Рибонуклеиновые кислоты в клетках участвуют в
а) хранении наследственной информации
б) регуляции обмена жиров
в) образовании углеводов
г) биосинтезе белков
8. Какая нуклеиновая кислота может быть в виде двухцепочечной молекулы
а) иРНК
б) тРНК
в) рРНК
г) ДНК
9. Из молекулы ДНК и белка состоит
а) микротрубочка
б) плазматическая мембрана
в) ядрышко
г) хромосомА
10. Формирование признаков организма зависит от молекул
а) ДНК
б) белков
в) РНК
г) АТФ
11. Молекулы ДНК в отличие от молекул белка обладают способностью
а) образовывать спираль
б) образовывать третичную структуру
в) самоудваиваться
г) образовывать четвертичную структуру
12. Собственную ДНК имеет
а) комплекс Гольджи
б) лизосома
в) эндоплазматическая сеть
г) митохондрия
13. Наследственная информация о признаках организма сосредоточена в молекулах
а) тРНК
б) ДНК
в) белков
г) полисахаридов
14. Молекулы ДНК представляют собой материальную основу наследственности, так как в них закодирована информация о структуре молекул
а) полисахаридов
б) белков
в) липидов
г) аминокислот
15. Полинуклеотидные нити в молекуле ДНК удерживаются рядом за счет связей между
а) комплементарными азотистыми основаниями
б) остатками фосфорной кислоты
в) аминокислотами
г) углеводами
16. Из одной молекулы нуклеиновой кислоты в соединении с белками состоит
а) хлоропласт
б) хромосома
в) ген
г) митохондрия
17. Каждая аминокислота в клетке кодируется
а) одним триплетом
б) несколькими триплетами
в) одним или несколькими триплетами
г) одним нуклеотидом
18. Благодаря свойству молекулы ДНК воспроизводить себе подобных
а) формируется приспособленность организма к среде обитания
б) у особей вида возникают модификации
в) появляются новые комбинации генов
г) происходит передача наследственной информации от материнской клетки к дочерним
19. Определенной последовательностью трех нуклеотидов зашифрована в клетке каждая молекула
а) аминокислоты
б) глюкозы
в) крахмала
г) глицерина
20. Где в клетке содержатся молекулы ДНК
а) В ядре, митохондриях и пластидах
б) В рибосомах и комплексе Гольджи
в) В цитоплазматической мембране
г) В лизосомах, рибосомах, вакуолях
21.
В клетках растений тРНК
а) хранит наследственную информацию
б) реплицируется на иРНК
в) обеспечивает репликацию ДНК
г) переносит аминокислоты на рибосомы
22. Молекула РНК содержит азотистые основания:
а) аденин, гуанин, урацил, цитозин
б) цитозин, гуанин, аденин, тимин
в) тимин, урацил, аденин, гуанин
г) аденин, урацил, тимин, цитозин.
23. Мономерами молекул нуклеиновых кислот являются:
а) нуклеозиды
б) нуклеотиды
в) полинуклеотиды
г) азотистые основания.
24. Состав мономеров молекул ДНК и РНК отличается друг от друга содержанием:
а) сахара
б) азотистых оснований
в) сахара и азотистых оснований
г) сахара, азотистых оснований и остатков фосфорных кислот.
25. Клетка содержит ДНК в:
а) ядре
б) ядре и цитоплазме
в) ядре, цитоплазме и митохондриях
г) ядре, митохондриях и хлоропластах.
Читайте также:
- AT : химич. Природа, строение, свойства, механизм специфического взаимодействия с АГ
- III. Полномочия и функции Комиссии
- IV.2. ХИМИЧЕСКОЕ СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ
- XI. Основные виды и жанры аниме
- Административно – процедурное производство. Сущность и виды.
- Административно-правовые нормы, структура и виды норм.
- Административно-процессуальные нормы: понятие и виды
- Административное наказание и его виды
- Административный надзор, понятие, виды, органы.
- Акт применения правовых норм: понятие, особенности, виды
- Аналитические абстрактные функции и ряды Тейлора.
- Анатомическое строение зерна