Строение клетки гриба


Химический состав и структура клеточной стенки грибов

Клеточная стенка грибов многослойная, при этом разные слои образованы различающимися по химическому составу структурными углеводами, которые по химическому составу можно разделить на 3 группы:

полимеры глюкозы (глюкан, хитин, целлюлоза). Глюканы составляют наружный слой клеточной стенки большинства грибов. Внутренний слой грибной клеточной стенки образован цепочками хитина, придавая ей жесткость. Хитин замещает целлюлозу, которая у большинства грибов отсутствует, но входит в состав клеточной стенки оомицетов, которые в настоящее время к типичным грибам не относятся. Деацетилированный хитин получил название хитозан, который в комплексе с хитином образует клеточную стенку зигомицетов.

полимеры других моносахаридов (маннозы, галактозы и др.) в отличие от высших растений, где они составляют основу матрикса под общим названием гемицеллюлоза, менее характерны для грибов. Исключение составляют дрожжи, в клеточных стенках которых особенно много полимеров маннозы, называемых маннаны. Предполагают, что такой состав стенки лучше обеспечивает почкование.

полимеры углеводов, ковалентно связанные с пептидами (гликопротеины) формируют срединный слой многослойной клеточной стенки и играют важную роль, как в поддержании структурной целостности клеток, так и в ее обменных процессах с окружающей средой.

К другим специфическим особенностям грибной клетки относятся: отсутствие пластид, что сближает ее с клеткой животных;

Отсутствие крахмала, который у эумицетов замещается полисахаридом, близким к животному крахмалу гликогену, у оомицетов – полисахаридом, близкому к ламинарину бурых водорослей. Вырабатывается и целый ряд специфических для грибов запасных углеводов.

Выработка специфических вторичных метаболитов, из которых большую роль играют антибиотики, фито– и микотоксины, фитогормоны.

К специфическим особенностям грибов относятся также гетерокариоз и парасексуальный процесс.

У грибов очень широко распространено явление гетерокариоза или разноядерности, при котором в одной клетке длительное время сохраняются ядра, гетероаллельные по некоторым генам. Гетерокариоз заменяет гаплоидным грибам гетерозиготность и способствует быстрой адаптации грибов к меняющимся условиям. Наличие разноядерности обусловлено рядом специфических особенностей грибов:

1. наличие более одного ядра в клетке

2. специфическое строение клеточной перегородки, в которой имеется одно или несколько сквозных отверстий, называемых порами, через которые ядра могут мигрировать из одной клетки в другую

3. гифы внутри одной колонии и даже разных близко расположенных колоний, выросших из разных спор одного вида гриба часто срастаются, в результате чего возможен обмен ядрами разных штаммов.

Парасексуальный (псевдополовой) процесс. Если в гетерокариотичных клетках сливаются ядра, гетероаллельные по какому-либо локусу, возникает гетерозиготное диплоидное ядро. Оно может попасть в спору и дать начало диплоидному гетерозиготному клону. В процессе митозов диплоидные ядра могут возвращаться в гаплоидное состояние вследствие потери одного набора хромосом или в них может происходить обмен участками хромосом (митотический кроссинговер). Оба процесса сопровождаются рекомбинацией родительских генов и, следовательно, фенотипов. Парасексуальная (бесполовая) рекомбинация очень редкое явление, не превышающее одного ядра на миллион, но вследствие огромного числа ядер в мицелии постоянно наблюдается в популяциях грибов.

Размножение – вегетативное, бесполое, половое.

Вегетативное – фрагментация таллома, образование хламидоспор, которые после периода покоя прорастают в мицелий, почкование у дрожжей.

Бесполое размножение у разных грибов может осуществляться подвижными и неподвижными спорами. Зооспоры образуют относительно небольшая группа грибов и грибоподобных организмов – водные и некоторые наземные, у которых отчетливо прослеживаются генетические связи с водными грибами и водорослями. Структура жгутиков является важным диагностическим признаком при отнесении к определенному царству. У подавляющего большинства грибов при бесполом размножении образуются неподвижные споры, что указывает на их очень давний выход на сушу. По месту формирования и локализации различают эндогенные, образующиеся в спорангиях спорангиоспоры и экзогенные (конидии), развивающиеся на специальных гифах – конидиеносцах. Конидии образуются у большинства грибов (аскомицеты, базидиомицеты, некоторые зигомицеты) составляя конидиальное спороношение, которое отличается огромным многообразием и широко используется для диагностики грибов.

Половое размножение грибов имеет свою специфику как в морфологии полового процесс, так и в механизмах генетической и физиологической регуляции пола и передачи наследственной информации.

Соматогамия – самый распространенный и наиболее простой тип полового процесса, заключается в слиянии двух не дифференцированных на гаметы соматических клеток. Иногда он протекает даже без слияния клеток – сливаются ядра внутри клетки. Встречается у большинства базидиомицетов, сумчатых дрожжей и некоторых др. таксонов.

Гаметангиогамия – на гаплоидном мицелии обособляются гаметангии, при половом процессе сливается их содержимое. Такой половой процесс характерен для большинства сумчатых грибов. Вариантом гаметангиогамии является зигогамия у зигомицетов.

Гаметогамия в виде изо- гетеро и оогамии у грибов встречается значительно реже, чем у других эукариот. Изо- и гетерогамия встречается лишь у хитридиомицетов. Классическая оогамия с образованием сперматозоидов и яйцеклеток у грибов не выражена, а встречаются сильно измененные варианты.

По особенностям регуляции пола у грибов выделяют несколько типов полового процесса

Гинандромиксис можно рассмотреть на примере двудомных оомицетов, у которых оогонии и антеридии развиваются на разных талломах, например фитофтора или картофельный гриб. Если генетически однородный штамм выращивать в монокультуре, то он размножается только бесполым способом. Если рядом оказываются мицелии двух штаммов, то у них прослеживаются морфогенетические изменения под действием химических выделений стероидной природы – половых феромонов. Антеридиол индуцирует образование антеридиев у партнера, а оогониол –оогониев. При этом регуляция пола имеет относительный характер: будет ли штамм образовывать антеридии или же оогонии, зависит от количественного соотношения соответствующих феромонов у него и его партнера. Отсюда название полового процесса – гинандромиксис.

Димиксис или гетероталлизм. Уже давно было подмечено, что грибы могут быть гомо- или гетероталличными. У гомоталличных видов при половом процессе сливаются генетически идентичные ядра внутри мицелия. У гетероталличных видов для прохождения полового цикла необходимо на каком-то этапе (различном у разных видов грибов) слияние потомков спор (точнее, их ядер). Для половой совместимости двух штаммов необходимо генетическое различие (гетероаллельность) в определенных локусах, называемых локусами спаривания. У большинства грибов (зигомицеты, аскомицеты, часть базидиомицетов) имеется один локус спаривания с двумя аллелями. Локус спаривания состоит из нескольких генов, котрые управляют синтезом половых феромонов. Такой гетероталлизм называется однофакторным или биполярным. Потомство таких грибов после мейоза разделяется на две самонесовместимые, но взаимно совместимые группы в соотношении 1:1, т.е. вероятность родственного(инбридинга) и неродственного(аутбридинга) скрещивания составляет как и у двуполых высших эукариот 50%.

В геноме высших базидиальных грибов имеется два локуса спаривания – A и B, причем совместимы друг с другом только штаммы гетероаллельные по обоим локусам (Ax Bx совместим с Ay By, но не с Ax By и Ay Bx). Такой гетероталлизм называют двухфакторным или тетраполярным. Он снижает вероятность инбридинга до 25 %.

Диафоромиксис – у высших базидиомицетов имеется не два, а много аллелей локуса спаривания, случайно встречающихся у разных штаммов, слагающих популяцию. Такой контроль спаривания обеспечивает 100% вероятность аутбридинга, так как штаммы, имеющие разные аллели, взаимносовместимы, а аллелей очень много. В результате образуются панмиксные гибридные популляции.

Жизненные циклы грибов также разнообразны как и сами грибы. Основные циклы, их принадлежность к отделам грибов

1.Бесполый цикл характерен для огромной группы несовершенных или митогрибов, утративших половое размножение. Деление их ядер исключительно митотические. Подавляющее большинство митогрибов относится к сумчатым грибам, но в связи с утратой полового процесса, составляют формальную группу несовершенных грибов или дейтеромицетов.

2. Гаплоидный цикл. Вегетативный таллом несет гаплоидные ядра. После полового процесса (сингамии) диплоидная зигота (обычно после периода покоя) делится мейотически – зиготический мейоз. Характерен для зигомицетов и многих хитридиомицетов.

3. Гаплоидно-дикариотический цикл характеризуется тем, что после слияния содержимого гаметангиев (гаметангиогамия) или соматических клеток гаплоидного мицелия (соматогамия) ядра образуют дикарионы (пары генетически разных ядер). Они синхронно делятся, образуя дикариотический мицелий. Половой процесс завершается слиянием ядер дикариона, образующаяся зигота делится мейозом без периода покоя. Мейоспоры составляют половое спороношение сумчатых и базидиальных грибов в виде аскоспор и базидиоспор. При их прорастании образуется гаплоидный мицелий. У подавляющего большинства сумчатых грибов (кроме дрожжей и тафриновых грибов) в жизненном цикле преобладает гаплоидная фаза в виде вегетативного мицелия (анаморфа), дикариотическая фаза кратковременна и представлена аскогенными гифами, на которых образуются сумки (телеоморфа). У базидиальных грибов в жизненном цикле преобладает дикариотическая фаза, гаплоидная фаза кратковременна.

4. Гаплоидно-диплоидный цикл в виде изоморфной смены поколений у грибов встречается редко (некоторые дрожжи и водные хитридиомицеты).

5. Диплоидный цикл характерен для оомицетов и некоторых сумчатых дрожжей. Вегетативный таллом диплоидный, мейоз гаметический, наблюдается при формировании гаметангиев или гамет.

3. Экологические группы грибов.

Грибы и грибоподобные организмы входят во все наземные и водные экосистемы, как важнейшая часть гетеротрофного блока, вместе с бактериями занимая трофический уровень редуцентов. Широкое распространение грибов в биосфере определяется рядом важнейших особенностей:

1. Наличие у большинства мицелиальной структуры таллома. (позволяет быстро осваивать субстрат, иметь большую поверхность контакта со средой).

2. Большая скорость роста и размножения, позволяющие в короткие сроки заселять большие массы субстрата, образуя огромное число спор и распространять их на большие расстояния.

3. Высокая метаболическая активность, проявляющаяся в широком диапазоне значений экологических факторов.

4. Высокая скорость генетической рекомбинации, значительная биохимическая изменчивость, экологическая пластичность.

5. Способность быстро переходить к состоянию анабиоза, переживать неблагоприятные условия в течение длительного времени.

Главным экологическим фактором для грибов является пищевой субстрат. По отношению к этому фактору выделяют основные группы грибов, которые называются трофическими группами.

1. Сапротрофы – обитают на растительных остатках

4. Краткая характеристика отделов грибов.

Дата добавления: 2016-07-11; просмотров: 2934;

Похожие статьи:

Клеточная стенка — это дополнительная оболочка, которая располагается поверх (с внешней стороны) цитоплазматической мембраны и образуется в процессе жизнедеятельности самой клеткой. Такая оболочка есть у клеток не всех организмов, а только у растений, грибов, бактерий, части простейших (одноклеточных эукариот). Ее нет у животных клеток и многих простейших.

Строение и функции клеточной стенки взаимосвязанно формировались в процессе эволюции. При этом ее химическое строение (в большей степени) и функции (в меньшей) у разных групп организмов различаются. Так у растений основным компонентом оболочки является целлюлоза, у грибов — хитин, у бактерий — муреин.

Обычно в школьном курсе цитологии подробно рассматриваются строение и функции растительной клеточной стенки (оболочки).

Целлюлоза представляет собой линейный полисахарид, мономером которого является глюкоза. В составе клеточной стенки молекулы целлюлозы соединяются между собой водородными связями и образуют микрофибриллу (пучок). В оболочке множество таких фибрилл. Часть из них расположены параллельно друг другу, другая часть — под углом к первой и т. д. Такое строение создает прочный каркас.

Кроме целлюлозы, в состав клеточной стенки растений входят другие вещества (вода, гемицеллюлоза, пектиновые вещества, белки и др.). Они формируют матрикс, в котором находятся фибриллы. Вода составляет 60-70% массы оболочки. Молекулы гемицеллюлозы более короткие и разветвленные по-сравнению с целлюлозой, они связывают между собой микрофибриллы.

Пектины также представляют собой полисахариды (линейные и разветвленные), основным мономером которых является галактуроновая кислота. Также в их состав входят арабинозы и галактозы, остатки метанола. Пектиновые вещества имеют кислую природу, могут быть растворимыми и нерастворимыми. Растворимые пектины при добавлении сахара переходят в гелеобразное состояние. Из-за этой особенности их используют в пищевой промышленности в качестве желирующих веществ.

Стенки соседних клеток растений не примыкают друг к другу непосредственно. Между ними находится срединная пластинка, образованная из студнеобразных пектатов магния и кальция.

Соседние клетки растений связаны между собой через плазмодесмы — цитоплазматические мостики, проходящие через отверстия в клеточных стенках и срединных пластинках.

У большинства растительных клеток кроме первичной, после завершения роста и дифференциации, образуется вторичная стенка. Она формируется между цитоплазматической мембраной и первичной оболочкой и состоит из нескольких слоев целлюлозы. При этом фибриллы каждого слоя располагаются под своим углом. Данная структура придает клетке еще большую прочность. Вторичной стенки нет у клеток мягких тканей (например, у мезофилльной ткани листа).

Одревеснение ряда тканей растения связано с так называемой лигнификацией. Вещество лигнин придает стенкам особую прочность и жесткость.

Рассмотрев строение, обратимся к функциям клеточных стенок. У растений нет скелета, однако многие из них достигают огромных размеров, что невозможно без какой-либо внутренней опоры.

Ее то совместно и выполняют жесткие оболочки клеток. Итак, главная функция клеточных стенок растений — это обеспечение опоры за счет создания прочного каркаса.

Стенки ограничивают рост клеток и препятствуют их разрыву, не давая в определенных условиях излишкам воды поступать в клетки. Микрофибриллы целлюлозы, ориентируясь определенным образом, определяют направление роста клетки. Так, если волокна преимущественно идут поперек, то рост будет идти вдоль.

У растений есть ткани, выполняющие транспортную функцию. Некоторые из них состоят из мертвых клеток, а функцию транспорта обеспечивают исключительно клеточные стенки.

У некоторых клеток их оболочки служат для хранения запаса питательных веществ.

У большинства грибов клетка по своему строению и выполняемым ею функциям в целом аналогична клетке растений.

Она состоит из твердой оболочки и внутреннего содержимого, представляющего собой цитоплазматическую систему, окруженную цитоплазматической мембраной и содержащую митохондрии, рибосомы, ядро (или ядра), вакуоли и различные включения.


Однако грибная клетка имеет ряд специфических особенностей, отличающих ее от растительной клетки и послуживших в числе других аргументов основанием для выделения грибов в самостоятельное царство живой природы. Клеточная оболочка у грибов выполняет роль защитного барьера и, кроме того, непосредственно участвует в процессах питания гриба и обмена веществ между клеткой и внешней средой. Оболочка клетки может быть однослойной или многослойной, разнообразной по химическому составу. Строение, состав и свойства клеточной оболочки зависят от вида гриба и функций клетки. Они могут изменяться с возрастом, при переходе из одной фазы развития в другую, под влиянием условий питания и других факторов.

Основу оболочки составляют полисахариды (например, целлюлоза), простые сахара, белки, липиды и фосфаты. Кроме того, в ее состав входят лигниноподобные вещества, производные нуклеиновых кислот, аминокислоты, различные соли, смолы, а также хитин, свойственный покровными тканям насекомых, хитозан, Р-глюкан. Эти и другие компоненты содержатся в оболочках клеток грибов в самых разнообразных сочетаниях, образуя сложные комплексы, характерные для определенных систематических групп грибов.

Оболочки молодых клеток обычно тонкие, бесцветные, однородные по структуре. По мере старения оболочка может утолщаться, ослизняться, становиться более темной благодаря отложению пигментов. Наружные слои оболочки клеток (особенно спор) многих грибов кутинизированы, пропитаны воском и жиром, что делает их не смачиваемыми. У трутовых грибов, особенно часто в плодовых телах, наблюдаются лигнификация и опробковение оболочек гиф.

По строению ядерного аппарата грибы относятся к эукариотам. Ядро в клетках грибов четко обособлено, снабжено оболочкой и содержит ядрышко. У грибов разных систематических групп число ядер в клетке неодинаково. Хорошо развитый несептированный мицелий низших грибов содержит много ядер. У большинства сумчатых грибов (за исключением мучнисто росяных) и базидиомицетов клетки одно- или двуядерные, в зависимости от фазы развития. Ядра обычно мелкие, в среднем 2—3 мкм (в сумках и базидиях — более крупные), круглой, овальной или веретеновидной формы, однако форма их не постоянна.

Своеобразная особенность грибов — отсутствие в цитоплазме их клеток растительного крахмала. В то же время важнейшая роль, принадлежит гликогену, который обычно содержится в тканях животных. Гликоген является основным запасным веществом грибной клетки и равномерно распределяется по всей цитоплазме в виде мелких гранул. Клетки грибов содержат также большое количество метахроматина (волютина). Он относится к полифосфатам и играет важную роль в процессах обмена. Из других включений в клетках многих грибов содержатся жировые вещества; особенно богаты ими споры, плодовые тела, склероции, старые части мицелия. Жиры находятся в цитоплазме в мелкораспыленном состоянии или образуют более крупные капли (липосомы).

В состав клеток мицелия, репродуктивных органов, покоящихся структур грибов могут входить и многие другие вещества: пигменты, органические кислоты и их соли, витамины, терпены (ароматические эфирные масла), токсины, смолы и др.

Некоторые из них играют роль запасных питательных веществ клетки, участвуют в физиологических процессах, выполняют защитную функцию, другие являются вредными для клетки продуктами ее метаболизма.

Индийский грибРаспространения спор грибов 

Мицелиальная клетка грибов одета твердой оболочкой, основу которой составляет клеточная стенка, снаружи она часто бывает покрыта слизистым слоем — капсулой. Основная функция клеточной стенки — защитная, кроме того, она участвует в морфогенетических и ростовых процессах. В состав клеточной стенки входят полисахариды, белки, липиды, нуклеиновые кислоты. Химизм клеточной оболочки имеет большое таксономическое значение. Большинство грибов содержит в составе клеточной оболочки азотсодержащий полисахарид хитин (подобно насекомым и ракообразным). Однако хитин грибной клетки отличается низким содержанием азота.

У грибов классов Oomycetes, Hyphochytridiomycetes в состав оболочки клетки входит целлюлоза (у последнего класса наряду с хитином). Из безазотистых полисахаридов у грибов обнаружены глюканы. У представителей пор.

Mucorales (класс Zygomycetes) обнаружен хитозан. В наружных частях клеточной оболочки часто локализуются пигменты меланины. К внутренней стороне клеточной стенки примыкает пристенная трехслойная цитоплазматическая мембрана — плазмолемма, окружающая сферопласт. Цитоплазма в молодых клетках заполняет всю полость клетки, и в ней можно заметить мельчайшие вакуоли. В старых клетках цитоплазма редуцирована до тонкого постенного слоя, а центр клетки занят крупной вакуолей. Цитоплазма грибной клетки слагается из гистоплазмы — матрикса цитоплазмы и органелл — мембранных структур. Важнейшей клеточной мембраной является эндоплазматический ретикулум (система канальцев, пузырьков или цистерн). Различают два типа эндоплазматического ретикулума — гладкий и зернистый, на поверхности которого располагаются рибосомы. Последние содержатся также в цитоплазме клетки. Аппарат Гольджи обнаружен у небольшого числа грибов (класс Oomycetes, у некоторых представителей классов Basidiomycetes и Ascomycetes). Еще сравнительно недавно считали, что эта структура у грибов отсутствует.

В клетках грибов, так же как и других эукариотических организмов, обнаружены митохондрии, но они отличаются несколько меньшими размерами по сравнению с растительными клетками. В отличие от клеток других эукариотов, у грибов отмечены специфические для них структуры в виде пузырьков, образующихся между клеточной стенкой и плазматической мембраной — это ломасомы, функция которых еще недостаточно выяснена.

В клетках грибов откладываются запасные питательные вещества в виде гликогена, который содержится в виде гранул непосредственно в цитоплазме, а также капли масла и волютин. Никаких пластид в цитоплазме нет.

Ядро окружено двойной мембраной, имеющей хорошо заметные поры. У грибов встречаются одноядерные (монокарионы), двухъядерные (дикарионы) и многоядерные (мультикарионы) клетки. Одноядерные клетки известны у представителей пор. Erysiphales, клетки мицелия базидиальных грибов чаще всего двухъядерные. Многоядерными являются клетки многих несовершенных грибов. Причиной мультикариотических клеток может быть, с одной стороны, запаздывание образования перегородок у гиф и, с другой стороны, миграция ядер из одной клетки в другую.

Размеры ядер чаще от 2 до 12 мкм, преобладают 3—4 мкм. Самое крупное ядро отмечено у Basidiobolus, его размер — 25 мкм. Наиболее мелкие ядра встречаются у головневых и дрожжевых грибов от 1,7 до 1,8 мкм. Замечено, что размеры ядер в репродуктивных клетках больше, чем в соматических. Так, например, у Neurospora cracca в соматических клетках размеры ядер составляют 3 мкм, а диплоидные ядра в молодых сумках имеют размер в 10—15 мкм. Ядра чаще всего имеют округлую или вытянутую форму. Особенностью ядер грибной клетки является их способность к передвижению, миграция их из старых частей мицелия к растущим. Механизм движения полностью еще неизвестен.

Большое значение для систематики имеет строение клеточных перегородок, или септ, которые являются производными клеточной оболочки и образуются путем инвагинации (выпячивания) цитоплазматической мембраны внутрь клетки. Это единственный для всех грибов путь возникновения септ. Через них осуществляется связь цитоплазмы соседних клеток, происходит перемещение питательных веществ, миграция клеточных органелл (ядер, митохондрий и т. д.). Существует несколько типов септ. Наибольший таксономический интерес представляет строение септ у аскомицетов и базидиомицетов.

Аскомицетный тип септ — пластинка с центральной норой, через которую и осуществляется миграция ядер. Этот тип септ обнаружен у классов Ascomycetes, Deuteromycetes и порядков Uredinales, Ustilaginales, а также у лишайников.

Иное строение септ у большинства базидиомицетов, для которых характерен долиопоровый тип более сложного строения. Начало развития такой септы сходно с первым типом — ее рост начинается из внутренних слоев клеточной стенки и также направлен внутрь гифы. Но далее концы отростков в центре гифы расширяются, образуя кувшинообразные септальные вздутия, которые не смыкаются, образуя пору. Эти вздутия окружены мембраной — парентосомой, которая тесно связана с эндоплазматическим ретикулумом. Парентосома в одних случаях имеет пористость (сем. Polyporaceae), в других случаях бывает без пор. Парентосома однако не препятствует миграции ядер через такие септы.

Н.П. Черепанова. Морфология и размножение грибов. Учебное пособие. Изд-во Ленинградского университета. Ленинград. 1981

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Google+

Одноклассники

Химический состав и структура клеточной стенки грибов

Клеточная стенка грибов многослойная, при этом разные слои образованы различающимися по химическому составу структурными углеводами, которые по химическому составу можно разделить на 3 группы:

полимеры глюкозы (глюкан, хитин, целлюлоза). Глюканы составляют наружный слой клеточной стенки большинства грибов. Внутренний слой грибной клеточной стенки образован цепочками хитина, придавая ей жесткость. Хитин замещает целлюлозу, которая у большинства грибов отсутствует, но входит в состав клеточной стенки оомицетов, которые в настоящее время к типичным грибам не относятся. Деацетилированный хитин получил название хитозан, который в комплексе с хитином образует клеточную стенку зигомицетов.

полимеры других моносахаридов (маннозы, галактозы и др.) в отличие от высших растений, где они составляют основу матрикса под общим названием гемицеллюлоза, менее характерны для грибов. Исключение составляют дрожжи, в клеточных стенках которых особенно много полимеров маннозы, называемых маннаны. Предполагают, что такой состав стенки лучше обеспечивает почкование.

полимеры углеводов, ковалентно связанные с пептидами (гликопротеины) формируют срединный слой многослойной клеточной стенки и играют важную роль, как в поддержании структурной целостности клеток, так и в ее обменных процессах с окружающей средой.

К другим специфическим особенностям грибной клетки относятся: отсутствие пластид, что сближает ее с клеткой животных;

Отсутствие крахмала, который у эумицетов замещается полисахаридом, близким к животному крахмалу гликогену, у оомицетов – полисахаридом, близкому к ламинарину бурых водорослей. Вырабатывается и целый ряд специфических для грибов запасных углеводов.

Выработка специфических вторичных метаболитов, из которых большую роль играют антибиотики, фито– и микотоксины, фитогормоны.

К специфическим особенностям грибов относятся также гетерокариоз и парасексуальный процесс.

У грибов очень широко распространено явление гетерокариоза или разноядерности, при котором в одной клетке длительное время сохраняются ядра, гетероаллельные по некоторым генам. Гетерокариоз заменяет гаплоидным грибам гетерозиготность и способствует быстрой адаптации грибов к меняющимся условиям. Наличие разноядерности обусловлено рядом специфических особенностей грибов:

1. наличие более одного ядра в клетке

2. специфическое строение клеточной перегородки, в которой имеется одно или несколько сквозных отверстий, называемых порами, через которые ядра могут мигрировать из одной клетки в другую

3. гифы внутри одной колонии и даже разных близко расположенных колоний, выросших из разных спор одного вида гриба часто срастаются, в результате чего возможен обмен ядрами разных штаммов.

Парасексуальный (псевдополовой) процесс. Если в гетерокариотичных клетках сливаются ядра, гетероаллельные по какому-либо локусу, возникает гетерозиготное диплоидное ядро. Оно может попасть в спору и дать начало диплоидному гетерозиготному клону. В процессе митозов диплоидные ядра могут возвращаться в гаплоидное состояние вследствие потери одного набора хромосом или в них может происходить обмен участками хромосом (митотический кроссинговер). Оба процесса сопровождаются рекомбинацией родительских генов и, следовательно, фенотипов. Парасексуальная (бесполовая) рекомбинация очень редкое явление, не превышающее одного ядра на миллион, но вследствие огромного числа ядер в мицелии постоянно наблюдается в популяциях грибов.

Размножение – вегетативное, бесполое, половое.

Вегетативное – фрагментация таллома, образование хламидоспор, которые после периода покоя прорастают в мицелий, почкование у дрожжей.

Бесполое размножение у разных грибов может осуществляться подвижными и неподвижными спорами. Зооспоры образуют относительно небольшая группа грибов и грибоподобных организмов – водные и некоторые наземные, у которых отчетливо прослеживаются генетические связи с водными грибами и водорослями. Структура жгутиков является важным диагностическим признаком при отнесении к определенному царству. У подавляющего большинства грибов при бесполом размножении образуются неподвижные споры, что указывает на их очень давний выход на сушу. По месту формирования и локализации различают эндогенные, образующиеся в спорангиях спорангиоспоры и экзогенные (конидии), развивающиеся на специальных гифах – конидиеносцах. Конидии образуются у большинства грибов (аскомицеты, базидиомицеты, некоторые зигомицеты) составляя конидиальное спороношение, которое отличается огромным многообразием и широко используется для диагностики грибов.

Половое размножение грибов имеет свою специфику как в морфологии полового процесс, так и в механизмах генетической и физиологической регуляции пола и передачи наследственной информации.

Соматогамия – самый распространенный и наиболее простой тип полового процесса, заключается в слиянии двух не дифференцированных на гаметы соматических клеток. Иногда он протекает даже без слияния клеток – сливаются ядра внутри клетки. Встречается у большинства базидиомицетов, сумчатых дрожжей и некоторых др. таксонов.

Гаметангиогамия – на гаплоидном мицелии обособляются гаметангии, при половом процессе сливается их содержимое. Такой половой процесс характерен для большинства сумчатых грибов. Вариантом гаметангиогамии является зигогамия у зигомицетов.

Гаметогамия в виде изо- гетеро и оогамии у грибов встречается значительно реже, чем у других эукариот. Изо- и гетерогамия встречается лишь у хитридиомицетов. Классическая оогамия с образованием сперматозоидов и яйцеклеток у грибов не выражена, а встречаются сильно измененные варианты.

По особенностям регуляции пола у грибов выделяют несколько типов полового процесса

Гинандромиксис можно рассмотреть на примере двудомных оомицетов, у которых оогонии и антеридии развиваются на разных талломах, например фитофтора или картофельный гриб. Если генетически однородный штамм выращивать в монокультуре, то он размножается только бесполым способом. Если рядом оказываются мицелии двух штаммов, то у них прослеживаются морфогенетические изменения под действием химических выделений стероидной природы – половых феромонов. Антеридиол индуцирует образование антеридиев у партнера, а оогониол –оогониев. При этом регуляция пола имеет относительный характер: будет ли штамм образовывать антеридии или же оогонии, зависит от количественного соотношения соответствующих феромонов у него и его партнера. Отсюда название полового процесса – гинандромиксис.

Димиксис или гетероталлизм. Уже давно было подмечено, что грибы могут быть гомо- или гетероталличными. У гомоталличных видов при половом процессе сливаются генетически идентичные ядра внутри мицелия. У гетероталличных видов для прохождения полового цикла необходимо на каком-то этапе (различном у разных видов грибов) слияние потомков спор (точнее, их ядер). Для половой совместимости двух штаммов необходимо генетическое различие (гетероаллельность) в определенных локусах, называемых локусами спаривания. У большинства грибов (зигомицеты, аскомицеты, часть базидиомицетов) имеется один локус спаривания с двумя аллелями. Локус спаривания состоит из нескольких генов, котрые управляют синтезом половых феромонов. Такой гетероталлизм называется однофакторным или биполярным. Потомство таких грибов после мейоза разделяется на две самонесовместимые, но взаимно совместимые группы в соотношении 1:1, т.е. вероятность родственного(инбридинга) и неродственного(аутбридинга) скрещивания составляет как и у двуполых высших эукариот 50%.

В геноме высших базидиальных грибов имеется два локуса спаривания – A и B, причем совместимы друг с другом только штаммы гетероаллельные по обоим локусам (Ax Bx совместим с Ay By, но не с Ax By и Ay Bx). Такой гетероталлизм называют двухфакторным или тетраполярным. Он снижает вероятность инбридинга до 25 %.

Диафоромиксис – у высших базидиомицетов имеется не два, а много аллелей локуса спаривания, случайно встречающихся у разных штаммов, слагающих популяцию. Такой контроль спаривания обеспечивает 100% вероятность аутбридинга, так как штаммы, имеющие разные аллели, взаимносовместимы, а аллелей очень много. В результате образуются панмиксные гибридные популляции.

Жизненные циклы грибов также разнообразны как и сами грибы. Основные циклы, их принадлежность к отделам грибов

1.Бесполый цикл характерен для огромной группы несовершенных или митогрибов, утративших половое размножение. Деление их ядер исключительно митотические. Подавляющее большинство митогрибов относится к сумчатым грибам, но в связи с утратой полового процесса, составляют формальную группу несовершенных грибов или дейтеромицетов.

2. Гаплоидный цикл. Вегетативный таллом несет гаплоидные ядра. После полового процесса (сингамии) диплоидная зигота (обычно после периода покоя) делится мейотически – зиготический мейоз. Характерен для зигомицетов и многих хитридиомицетов.

3. Гаплоидно-дикариотический цикл характеризуется тем, что после слияния содержимого гаметангиев (гаметангиогамия) или соматических клеток гаплоидного мицелия (соматогамия) ядра образуют дикарионы (пары генетически разных ядер). Они синхронно делятся, образуя дикариотический мицелий. Половой процесс завершается слиянием ядер дикариона, образующаяся зигота делится мейозом без периода покоя. Мейоспоры составляют половое спороношение сумчатых и базидиальных грибов в виде аскоспор и базидиоспор.

При их прорастании образуется гаплоидный мицелий. У подавляющего большинства сумчатых грибов (кроме дрожжей и тафриновых грибов) в жизненном цикле преобладает гаплоидная фаза в виде вегетативного мицелия (анаморфа), дикариотическая фаза кратковременна и представлена аскогенными гифами, на которых образуются сумки (телеоморфа). У базидиальных грибов в жизненном цикле преобладает дикариотическая фаза, гаплоидная фаза кратковременна.

4. Гаплоидно-диплоидный цикл в виде изоморфной смены поколений у грибов встречается редко (некоторые дрожжи и водные хитридиомицеты).

5. Диплоидный цикл характерен для оомицетов и некоторых сумчатых дрожжей. Вегетативный таллом диплоидный, мейоз гаметический, наблюдается при формировании гаметангиев или гамет.

3. Экологические группы грибов.

Грибы и грибоподобные организмы входят во все наземные и водные экосистемы, как важнейшая часть гетеротрофного блока, вместе с бактериями занимая трофический уровень редуцентов. Широкое распространение грибов в биосфере определяется рядом важнейших особенностей:

1. Наличие у большинства мицелиальной структуры таллома. (позволяет быстро осваивать субстрат, иметь большую поверхность контакта со средой).

2. Большая скорость роста и размножения, позволяющие в короткие сроки заселять большие массы субстрата, образуя огромное число спор и распространять их на большие расстояния.

3. Высокая метаболическая активность, проявляющаяся в широком диапазоне значений экологических факторов.

4. Высокая скорость генетической рекомбинации, значительная биохимическая изменчивость, экологическая пластичность.

5. Способность быстро переходить к состоянию анабиоза, переживать неблагоприятные условия в течение длительного времени.

Главным экологическим фактором для грибов является пищевой субстрат. По отношению к этому фактору выделяют основные группы грибов, которые называются трофическими группами.

1. Сапротрофы – обитают на растительных остатках

4. Краткая характеристика отделов грибов.

Дата добавления: 2016-07-11; просмотров: 2932;

Похожие статьи:

Клетка гриба

В отличие от эукариотов (растений, животных, бактерий), грибы характеризуются более простым строением клеток.

Каждая клетка имеет в составе протопласт, вакуоли и покрыта прочной оболочкой, выполняющей защитную функцию.Протопласт включает ядро и цитоплазму, которая, в свою очередь, является вместилищем органоидов, погруженных в гиалоплазму.

Состав

Клеточная оболочка характеризуется тем, что ее состав может меняться, когда за одной фазой роста следует другая, либо в зависимости от типа роста (например, гифальный, дрожжеподобный, т.д.).

Свойства оболочки определяются совокупностью функций клетки гриба, особенностями контакта ее с окружающей средой. Состав клеточной оболочки у разных видов отличается. Она бывает хитиново-глюкановой, целлюлозно-хитиновой. Ее основополагающий структурный элемент – это хитин (азотсодержащее вещество). Причем у ряда грибов хитин может составлять около 60% сухой массы оболочки. У некоторых грибов, например, у мукоральных, в оболочку входит хитозан. Зачастую клеточная оболочка представлена несколькими слоями, что обеспечивает ее прочность. На ее поверхности обнаруживаются некоторые ферменты. Клеточная оболочка определяет форму органов размножения гриба и вегетативных клеток гиф.

Протопласт представляет собой сферическую часть клетки, в которой осуществляются метаболические процессы. Также его характеризует способность к регенерации. Протопласт и клеточная оболочка разделены плазмалеммой. Это мембрана, построенная из белков и липидов. Ее основная функция – налаживание режима поступления растворов из клетки в окружающий мир и наоборот. Данный круговорот веществ может быть как активным, так и пассивным. В протопласте хорошо заметны ядро и цитоплазма.Цитоплазма включает различные органоиды. Это рибосомы, эндоплазматическая сеть, митохондрии, т.д. Особые надмолекулярные агрегаты в цитоплазме (микротрубочки, микрофиламенты) образуют цитоскелет клетки. В отличие от клеток растений, у грибов эндоплазматическая сеть плохо развита, а в митохондриях кристы более сплющенные. Также тельца Гольджи, играющие большую роль в образовании клеточной стенки у растений, обнаруживаются только у редких видов грибов. Особенность протопласта клетки грибов – наличие ломасом. Это прозрачные тельца губковидной формы, функция которых до сих пор неизвестна.

Ядро у подавляющего большинства грибов относительно маленьких размеров, округлое, с двойной мембраной. Расположено в центральной части или у клеточной оболочки. В клетках гиф может быть одно либо несколько ядер. Главная функция ядра – копирование РНК и транспортировка генетического кода в цитоплазму посредством РНК. Характерной особенностью ядер клеток грибов является их свойство перемещаться из одной клетки в другую. Интересен такой факт: у грибов после деления ядра перегородка между разделившимися клетками может сформироваться позднее, что приводит к образованию многоядерных клеток.

Вакуоли – неотъемлемая часть клетки. Они отделены от протопласта мембраной. В юных клетках вакуоли небольших размеров, в старых сливаются с формированием одной крупной вакуоли. В данной органелле хранятся запасные питательные вещества. Также эти вещества могут свободно размещаться в цитоплазме. Так, гликоген может находиться в виде гранул, масло в виде капель.

Для редких групп грибов характерно наличие жгутиков, благодаря которым осуществляется перемещение гамет и зооспор. Их строение сходно со строением жгутиков простейших, имеются существенные отличия от жгутиков бактерий

Похожие материалы:

1. Грибы
2. Строение грибов
3. Мицелий грибов
4. Ведьмины круги
5. Части гриба

Оставьте комментарий