Строение и функции белков

1   2   3   4   5

Билеты по Биологии

1 курс

Билет №1

1. Белки, их строение и функции в организме.

Белки́(протеины) — высокомолекулярныеорганические вещества, состоящие из альфа-аминокислот, соединённых в цепочку пептидной связью (белковая молекула представляет собой линейный полимер, построенный из аминокислот, соединенных между собой валентными амидными связями (пептидными связями). 
Говоря о строении белка, различают: 
— первичную структуру — последовательность аминокислот, прочитываемую, начиная от С-конца молекулы, в направлении к N-концу; 
— вторичную структуру — наличие и локализацию альфа-спиральных участков цепи и участков, сложенных в бета-структуры; 
— третичную структуру ( пространственную) — взаимное расположение аминокислотных остатков молекулы белка в пространстве; 
— четвертичную структуру — компонентный состав, стехиометрию и взаимную ориентацию субъединиц комплекса, в том случае, когда молекулы белка обладают способностью к его образованию. 
В организме человека белки выполняют следующие функции: 
Пластическую. На долю белков приходится 15-20% сырой массы различных тканей (липиды и углеводы составляют 1-5 %). Белки являются главным строительным материалом клетки и межклеточного вещества. Они вместе с фосфолипидами образуют остов всех биологических мембран. 
Каталитическую. Белки служат основным компонентом всех ферментов. Ферментам принадлежит решающая роль в ассимиляции пищевых веществ организмом человека и в регуляции всех внутриклеточных обменных процессов. 
Гормональную. Большая часть гормонов по своей природе является белками или полипептидами. К их числу принадлежат гормоны гипофиза (АКТГ, соматотропный, тиреотропный и др.) , инсулин, паратиреоидный гормон. 
Специфичности. Белки обеспечивают тканевую индивидуальную и видовую специфичность, лежащую в основе проявлений иммунитета и аллергии, а также защиту организма от чужеродных антигенов. 
Транспортную. Белки участвуют в переносе кровью кислорода (гемоглобин) , липидов (липопротеиды) , углеводов (гликопротеиды) , некоторых витаминов, гормонов, лекарственных веществ и др. Специфические белки-переносчики обеспечивают проникновение минеральных веществ и витаминов через мембраны клеток и субклеточных структур. 

2. Наследственная изменчивость как движущая сила эволюции.

Наследственность — свойство организмов передавать особенности строения и жизнедеятельности из поколения в поколение. 
Материальные основы наследственности — хромосомы и гены, в которых хранится информация о признаках организма. Передача генов и хромосом из поколения в поколение благодаря размножению. Развитие дочернего организма из одной клетки — зиготы или группы клеток материнского организма в процессе размножения. Локализация в ядрах клеток, участвующих в размножении, генов и хромосом, определяющих сходство дочернего организма с материнским. 

Изменчивость — общее свойство всех организмов приобретать новые признаки в процессе индивидуального развития. 

Наследственная изменчивость — фактор эволюции. Появление новых признаков у организмов и их многообразие — материал для действия естественного отбора, сохранения особей с изменениями, соответствующими среде обитания, формирования приспособленности организмов к изменяющимся условиям внешней среды.
Билет №2

1. Фотосинтез, его значение. Космическая роль зеленых растений.

Фотосинтез — процесс образования органического вещества из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий)
Значение фотосинтеза в природе:
Фотосинтез является основным источником биологической энергии, фотосинтезирующие автотрофы используют её для синтеза органических веществ из неорганических, гетеротрофы существуют за счёт энергии, запасённой автотрофами в виде химических связей, высвобождая её в процессах дыхания и брожения. Энергия получаемая человечеством при сжигании ископаемого топлива (уголь, нефть, природный газ, торф) также является запасённой в процессе фотосинтеза.

Фотосинтез является главным входом неорганического углерода в биологический цикл. Весь свободный кислород атмосферы — биогенного происхождения и является побочным продуктом фотосинтеза. Формирование окислительной атмосферы (кислородная катастрофа) полностью изменило состояние земной поверхности, сделало возможным появление дыхания, а в дальнейшем, после образования озонового слоя, позволило жизни.

Космическая роль зеленых растений:
Особая роль в этом отношении принадлежит зеленым растениям, роль, которую К. А. Тимирязев назвал Космической. Она заключается в том, что «зеленое зерно хлорофилла является фокусом, точкой в мировом пространстве, в которую с одного конца притекает энергия солнца, а с другого берут начало все проявления жизни на Земле» 
Ежегодно на Землю поступает огромное количество энергии солнца (1,26- 1024 кал) , 42% которой отражается в мировое пространство. Используя часть энергии солнечных лучей, зеленые растения утилизируют углекислый газ воздуха в качестве источника углерода в процессе синтеза органических веществ. Но зеленое растение не только получает для себя пищу из неорганической природы, оно, по словам Тимирязева, является посредником между небом и Землей. Энергия, полученная от солнечного луча, аккумулируется в растении и в этом виде вместе с накопленным в его теле органическим веществом поступает в организм других растений или животных, питающихся растительной пищей. Последние в свою очередь служат пищей для других гетеротрофных организмов. 
Выделяемый в процессе фотосинтеза кислород оказывается необходимым для жизни всех аэробных организмов, которые в процессе дыхания поглощают его из воздуха, одновременно выделяя углекислый газ. Такое постоянное поступление углекислого газа в атмосферу имеет колоссальное значение в круговороте веществ. По приблизительным подсчетам, растительный покров земного шара ежегодно ассимилирует из углекислого газа свыше 140 млрд. т углерода, что примерно составляет 3 г на гектар. Всего в атмосфере содержится около двух тысяч биллионов килограммов углекислого газа, которого не хватило бы и на100 лет, если бы он не поступал в атмосферу и гидросферу в процессе жизнедеятельности организмов.
2. Вид, его критерии. Редкие и исчезающие виды растений и животных, меры их сохранения.
Вид — основная структурная единица биологической систематики живых организмов (животных, растений и микроорганизмов); таксономическая, систематическая единица, группа особей с общими морфофизиологическими, биохимическими и поведенческими признаками, способная к взаимному скрещиванию, дающему в ряду поколений плодовитое потомство, закономерно распространённая в пределах определённого ареала и сходно изменяющаяся под влиянием факторов внешней среды.
Основные критерии:
Морфологический критерий предполагает описание внешних (морфологических) признаков особей, входящих в состав определенного вида. По внешнему виду, размерам и окраске оперения можно, например, легко отличить большого пестрого дятла от зеленого, малого пестрого дятла от желны, большую синицу от хохлатой, длиннохвостой, голубой и от гаички. По внешнему виду побегов и соцветий, размерам и расположению листьев легко различают виды клевера: луговой, ползучий, люпиновый, горный.

Физиологический критерий заключается в сходстве жизненных процессов, в первую очередь в возможности скрещивания между особями одного вида с образованием плодовитого потомства. Между разными видами существует физиологическая изоляция. Например, у многих видов дрозофилы сперма особей чужого вида вызывает иммунологическую реакцию в половых путях самки, что приводит к гибели сперматозоидов. В то же время между некоторыми видами живых организмов скрещивание возможно; при этом могут образовываться плодовитые гибриды (зяблики, канарейки, вороны, зайцы, тополя, ивы и др.)

Географический критерий (географическая определенность вида) основан на том, что каждый вид занимает определенную территорию или акваторию. Иными словами, каждый вид характеризуется определенным географическим ареалом. Многие виды занимают разные ареалы. Но огромное число видов имеет совпадающие (накладывающиеся) или перекрывающиеся ареалы. Кроме того, существуют виды, не имеющие четких границ распространения, а также виды-космополиты, обитающие на огромных пространствах суши или океана. Космополитами являются некоторые обитатели внутренних водоемов — рек и пресноводных озер (виды рдестов, ряски, тростник). Обширный набор космополитов имеется среди сорных и мусорных растений, синантропных животных (виды, обитающие рядом с человеком или его жилищем) — постельный клоп, рыжий таракан, комнатная муха, а также одуванчик лекарственный, ярутка полевая, пастушья сумка и др.

Экологический критерий основан на том, что каждый вид может существовать только в определенных условиях, выполняя соответствующую функцию в определенном биогеоценозе. Иными словами, каждый вид занимает определенную экологическую нишу. Например, лютик едкий произрастает на пойменных лугах, лютик ползучий — по берегам рек и канав, лютик жгучий — на заболоченных местах. Существуют, однако, виды, которые не имеют строгой экологичекой приуроченности. Во-первых, это синан-тропные виды. Во-вторых, это виды, которые находятся под опекой человека: комнатные и культурные растения, домашние животные.

Генетический (цитоморфологический) критерий основан на различии видов по кариотипам, т. е. по числу, форме и размерам хромосом. Для подавляющего большинства видов характерен строго определенный кариотип. Однако и этот критерий не является универсальным. Во-первых, у многих разных видов число хромосом одинаково и форма их сходна. Так, многие виды из семейства бобовых имеют 22 хромосомы (2n = 22). Во-вторых, в пределах одного и того же вида могут встречаться особи с разным числом хромосом, что является результатом геномных мутаций. Например, ива козья имеет диплоидное (38) и тетраплоид-ное (76) число хромосом. У серебристого карася встречаются популяции с набором хромосом 100, 150,200, тогда как нормальное число их равно 50. Таким образом, в случае возникновения полиплоидных или анеушюидных (отсутствие одной хромосомы или появление лишней в геноме) форм на основе генетического критерия нельзя достоверно определить принадлежность особей к конкретному виду

Биохимический критерий позволяет различить виды по биохимическим параметрам (состав и структура определенных белков, нуклеиновых кислот и других веществ). Известно, что синтез определенных высокомолекулярных веществ присущ лишь отдельным группам видов. Например, по способности образовывать и накапливать алкалоиды различаются виды растений в пределах семейств пасленовых, сложноцветных, лилейных, орхидных. Или, к примеру, для двух видов бабочек из рода амата диагностическим признаком является наличие двух ферментов — фосфоглю-комутазы и эстеразы-5. Однако этот критерий не находит широкого применения — он трудоемкий и далеко не универсальный. Существует значительная внутривидовая изменчивость практически всех биохимических показателей вплоть до последовательности аминокислот в молекулах белков и нуклеотидов в отдельных участках ДНК.

Вымирающие виды — биологические виды, которые подвержены угрозе вымирания из-за своей критически малой численности либо воздействия определенных факторов окружающей среды.
Наиболее всесторонней справочной системой по вопросу охранного статуса видов на Земле является Красная книга МСОП. В ней с учетом как вышеупомянутых общих факторов, так и индивидуальных особенностей, характерных для каждого вида, виды распределены на 9 категорий:
Исчезнувший — вид, который исчез после смерти последнего животного данного вида и особей которых на момент исчезновения не было в неволе. Сюда не относятся животные, вымершие по различным причинам до 1500 года (как, например, динозавры).
Исчезнувший в природе— вид, полностью истреблённый в природе, но сохранённый в неволе.

Находится под критической угрозой — виды, количество особей которых в природе не превышает нескольких сотен.

Находится под угрозой— вид, количество особей которого довольно велико, но в силу определённых причин ещё нельзя сказать, что он не исчезнет в течение нескольких лет.

Уязвимый — многочисленный вид, который, однако, в силу причин (например, вырубки леса) всё ещё в опасности.

Близкий к угрозе вымирания— вид, который практически стоек, но ещё не в безопасности

Находится под небольшой угрозой— вид, который настолько многочислен, что сомнительно, что он самостоятельно попадёт под угрозу вымирания через десятки лет. С 2009 года к этому классу причислены люди.

Сведения недостаточны — виды, численность которых неясна.

Неисследованный — виды, сведения о которых не позволяют даже приблизительно определить угрозу их существования.

Охрана видов:
Чаще всего для охраны видов, в случае их небольшого ареала, предпринимается постройка специальных территорий трёх типов — заказник, заповедник или национальный парк. Заказник запрещает охоту в определённые сроки и предназначен для восстановления популяции животных после охоты. Проникновение человека туда свободно, но загрязнять там природу и вырубать леса запрещается. Заповедник запрещает охоту круглый год, в нём не должны быть построены никакие здания, в нём запрещена вырубка лесов и загрязнение природы, а также туда имеют доступ лишь учёные. Национальный парк разрешает допуск туристов и иных посетителей, но также запрещает охоту, загрязнение природы, вырубку лесов и постройку жилых зданий хотя разрешены административные. Размеры у них могут быть разные, причём иногда их границы могут соприкасаться, что может создавать неудобства в охране одного и того же вида, но в разных учреждениях. Для видов, вымерших в природе, но сохранившихся в неволе, существуют специальные питомник, в которых животным дают жить.
Билет №3

1. Вирусы, их строение. Вирусы – возбудители опасных заболеваний.
Вирусы — мельчайшие организмы, их размеры колеблются от 12 до 500 нанометров. Мелкие вирусы равны крупным молекулам белка. Вирусы — резко выраженные паразиты клеток. Важнейшими отличительными особенностями вирусов являются следующие отличия:

1. Они содержат в своем составе только один из типов нуклеиновых кислот: либо рибонуклеиновую кислоту (РНК), либо дезоксирибонуклеиновую (ДНК), — а все клеточные организмы, в том числе и самые примитивные бактерии, содержат и ДНК, и РНК одновременно.

2. Не обладают собственным обменом веществ, имеют очень ограниченное число ферментов. Для размножения используют обмен веществ клетки — хозяина, ее ферменты и энергию.

3. Могут существовать только как внутриклеточные паразиты и не размножаются вне клеток тех организмов, в которых паразитируют.
Строение вирусов

Вирусы нельзя увидеть в оптический микроскоп, так как их размеры меньше длины световой волны. Разглядеть их можно лишь с помощью электронного микроскопа.
Вирусы состоят из следующих основных компонентов:

1. Сердцевина — генетический материал (ДНК либо РНК), который несет информацию о нескольких типах белков, необходимых для образования нового вируса.

2. Белковая оболочка, которую называют капсидом (от латинского слова капса — ящик). Она часто построена из идентичных повторяющихся субъединиц — капсомеров. Капсомеры образуют структуры с высокой степенью симметрии.

3. Дополнительная липопротеидная оболочка. Она образована из плазматической мембраны клетки-хозяина и встречается только у сравнительно больших вирусов (грипп, герпес).
Вирусы как возбудитель заболеваний

Вирусы всегда являются паразитами и поэтому вызывают у своих хозяев определенные симптомы того или иного вида заболевания. К серьезным заболеваниям животных можно отнести ящур крупного рогатого скота, рожистое воспаление у свиней, чуму птиц и миксоматоз кроликов. Все эти заболевания вызываются вирусами. Вирусное заражение растений обычно приводит либо к появлению желтых крапинок на листьях (так называемой мозаики листьев), либо к морщинистости или карликовости листьев. Вирусы вызывают и задержку роста растений, что впоследствии приводит к снижению урожая. Ряд серьезных заболеваний вызывают вирусы желтой мозаики турнепса (ВЖМТ), табачной мозаики (ВТМ), карликовой кустистости томатов и бронзовости томатов. Появление полосок на некоторых сортах тюльпанов также обусловлено вирусом, а ведь цветоводы продают эти тюльпаны, выдавая их за особый сорт. Вирусы растений, по-видимому, всегда относятся к РНК-содержащим вирусам.
Способы передачи вирусных болезней

Капельная инфекция – самый обычный способ распространения респираторных заболеваний. При кашле и чихании в воздух выбрасываются миллионы крошечных капелек жидкости (слизи и слюны). Эти капли вместе с находящимися в них живыми микроорганизмами могут вдохнуть другие люди, особенно в местах большого скопления народа, к тому же еще и плохо вентилируемых. Стандартные гигиенические приемы для защиты от капельной инфекции – правильное пользование носовыми платками и проветривание комнат.

  1   2   3   4   5

На нашем форуме вы можете задать вопросы о проблемах своего здоровья, получить поддержку и бесплатную профессиональную рекомендацию специалиста, найти новых знакомых и поговорить на волнующие вас темы. Это позволит вам сделать собственный выбор на основании полученных фактов.

Обратите внимание! Диагностика и лечение виртуально не проводятся! Обсуждаются только возможные пути сохранения вашего здоровья.

Подробнее см. Правила форума  

[X]

Беседы с опытным психологом по Skype. Консультации, психотерапия.

Стоимость 1 часа — 500 руб. (с 02:00 до 16:00, время московское)

С 16:00 до 02:00 — 800 р/час.

E-mail: aristo@newmail.ru

Последние сообщения

Реальные консультации

Реальный консультативный прием ограничен.

Ранее обращавшиеся пациенты могут найти меня по известным им реквизитам.

Заметки на полях

Нажми на картинку —
узнай подробности!

Новости сайта

Ссылки на внешние страницы

20.05.12

Уважаемые пользователи!

Просьба сообщать о неработающих ссылках на внешние страницы, включая ссылки, не выводящие прямо на нужный материал, запрашивающие оплату, требующие личные данные и т.д.

Для оперативности вы можете сделать это через форму отзыва, размещенную на каждой странице.
Ссылки будут заменены на рабочие или удалены.

Тема от 05.09.08 актуальна!

Остался неоцифрованным 3-й том МКБ. Желающие оказать помощь могут заявить об этом на нашем форуме05.09.08
В настоящее время на сайте готовится полная HTML-версия МКБ-10 — Международной классификации болезней, 10-я редакция.

Желающие принять участие могут заявить об этом на нашем форуме

25.04.08
Уведомления об изменениях на сайте можно получить через раздел форума "Компас здоровья" — Библиотека сайта "Островок здоровья"

Это полимеры, мономерами которых являются аминокислоты. В основном они состоят из углерода, водорода, кислорода и азота.

В составе большинства исследованных белков всех живых организмов было выявлено 20 аминокислот, участвующих в их построении.

При синтезе белковой молекулы разные аминокислоты присоединяются последовательно друг к другу, образуя цепочку, или полипептид (впоследствии она может сворачиваться в спираль или глобулу). Разнообразие белков определяется тем, какие аминокислоты, в каком количестве и в каком порядке входят в полипептидную цепь. Две молекулы, одинаковые по числу и составу аминокислот, но отличающиеся по порядку их расположения, представляют два разных белка. Не только виды, но и особи одного вида отличаются по целому ряду белков (с чем, например, связан феномен несовместимости при пересадке тканей и органов от одного животного другому).

Понятия «белок» и «пептид» близки между собой, однако между ними имеются и различия. Пептидами обычно называют олигопептиды, т. е. те, чья цепь содержит наибольшее число аминокислотных остатков (10-15),а белками называют пептиды, со­держащие большое число аминокислотных остатков (до нескольких тысяч) иимеющие определенную компактную пространственную структуру, так как длинная полипептидная цепь является энергетически невыгодным состоянием.

Выделяются четыре уровня пространственной организации (структуры) бел­ков. Все структуры формируются в каналах эндоплазматической сети. При воздействии неблагоприятных факторов среды (облучение, повышенная температура, химические вещества) структуры белка могут разрушаться — происходит денатурация. Если этот процесс не затрагивает первичной структуры, он обратим, и по окончании воздействия молекула самопроизвольно восстанавливается. Первичная же структура невосстановима, так как формируется только на рибосомах при участии сложнейшего механизма биосинтеза белков. В зависи­мости от пространственной структуры белки бывают фибрил­лярные (в виде волокон) — строительные белки и глобулярные (в виде шара) — ферменты, антитела, некоторые гормоны и др.

Огромное разнообразие белков обеспечивает и множество функций, ими выполняемых, и многоообразие организмов.

Функции белков:

1)      защитная (интерферон усиленно синтезируется в организме при вирусной инфекции);

2)      структурная (коллаген входит в состав тканей, участвует в образовании рубца);

3)      двигательная (миозин участвует в сокращении мышц);

4)      запасная (альбумины яйца);

5)      транспортная (гемоглобин эритроцитов переносит питательные вещества и продукты обмена);

6)      рецепторная (белки-рецепторы обеспечивают узнавание клеткой веществ и других клеток);

7)      регуляторная (регуляторные белки определяют активность генов);

8)      белки-гормоны участвуют в гуморальной регуляции (инсулин регулирует уровень сахара в крови);

9)      белки-ферменты катализируют все химические реакции в организме;

10)    энергетическая (при распаде белка выделяется 17 кдж энергии).

Краснодембский Е. Г."Общая биология: Пособие для старшеклассников и поступающих в вузы"

Н. С. Курбатова, Е. А. Козлова "Конспект лекций по общей биологии"

Т.Л. Богданова  "Пособие для поступающих в вузы"

Белки. Структурная организация белковых молекул. Функции белковых молекул

Белки — это биополимеры, мономерами которых являются аминокислоты.

Аминокислоты представляют собой низкомолекулярные органические соединения, содержащие карбоксильную (-COOH) и аминную (-NH2) группы, которые связаны с одним и тем же атомом углерода. К атому углерода присоединяется боковая цепь — какой-либо радикал, придающий каждой аминокислоте определенные свойства.

У большей части аминокислот имеется одна карбоксильная группа и одна аминогруппа; эти аминокислоты называются нейтральными. Существуют, однако, и основные аминокислоты — с более чем одной аминогруппой, а также кислые аминокислоты — с более чем одной карбоксильной группой.

Известно около 200 аминокислот, встречающихся в живых организмах, однако только 20 из них входят в состав белков. Это так называемые основные или протеиногенные аминокислоты.

В зависимости от радикала основные аминокислоты делят на 3 группы:

  1. Неполярные (аланин, метионин, валин, пролин, лейцин, изолейцин, триптофан, фенилаланин);
  2. Полярные незаряженные (аспарагин, глутамин, серин, глицин, тирозин, треонин, цистеин);
  3. Заряженные (аргинин, гистидин, лизин — положительно; аспарагиновая и глутаминовая кислота — отрицательно).

Боковые цепи аминокислот (радикал) могут быть гидрофобными и гидрофильными и придают белкам соответствующие свойства.

У растений все необходимые аминокислоты синтезируются из первичных продуктов фотосинтеза. Человек и животные не способны синтезировать ряд протеиногенных аминокислот и должны получать их в готовом виде вместе с пищей. Такие аминокислоты называются незаменимыми. К ним относятся лизин, валин, лейцин, изолейцин, треонин, фенилаланин, триптофан, метионин; аргинин и гистидин — незаменимые для детей.

В растворе аминокислоты могут выступать в роли как кислот, так и оснований, т. е.

они являются амфотерными соединениями. Карбоксильная группа (-COOH) способна отдавать протон, функционируя как кислота, а аминная (-NH2) принимать протон, проявляя таким образом свойства основания.

Аминогруппа одной аминокислоты способна вступать в реакцию с карбоксильной группой другой аминокислоты. Образующаяся при этом молекула представляет собой дипептид, а связь между атомами углерода и азота называется пептидной связью.

На одном конце молекулы дипептида находится свободная аминогруппа, а на другом — свободная карбоксильная группа. Благодаря этому дипептид может присоединять к себя другие аминокислоты, образуя олигопептиды. Если таким образом соединяется много аминокислот (более 10), то образуется полипептид.

Пептиды играют важную роль в организме. Многие алигопептиды являются гормонами. Таковы окситоцин, вазопрессин, тиролиберин, тиреотропин и др. К олигопептидам относится также брадикидин (пептид боли) и некоторые опиаты («естественные наркотики» человека), выполняющие функцию обезболивания. Принятие наркотиков разрушает опиатную систему организма, поэтому наркоман без дозы наркотиков испытывает 1 сильную боль — «ломку», которая в норме снимается опиатами.

К олигопептидам относятся некоторые антибиотики (например, грамицидин S).

Многие гормоны (инсулин, адренокортикотропный гормон и др.), антибиотики (например, грамицидин А), токсины (например, дифтерийный токсин) являются полипептидами.

Белки представляют собой полипептиды с молекулярной массой свыше 10 000, в молекулу которых входит от 50 до нескольких тысяч аминокислот.

Каждому белку свойственна в определенной среде своя особая пространственная структура. При характеристике пространственной (трехмерной) структуры выделяют четыре уровня организации молекул белков.

Первичная структура — последовательность аминокислот в полипептид ной цепи. Первичная структура специфична для каждого белка и определяется генетической информацией, т.е. зависит от последовательности нуклеотидов в участке молекулы ДНК, кодирующем данный белок. От первичной структуры зависят все свойства и функции белков. Замена одной единственной аминокислоты в составе молекул белка или изменение их расположения обычно влечет за собой изменение функции белка. Так как в состав белков входит 20 видов аминокислот, число вариантов их комбинаций в пол и пептидной цепи поистине безгранично, что обеспечивает огромное количество видов белков в живых клетках.

В живых клетках молекулы белков или отдельные их участки представляют собой не вытянутую цепь, а скручены в спираль, напоминающую растянутую пружину (это так называемая α-спираль) или сложены в складчатый слой (β-слой). Вторичная структура возникает в результате образования водородных связей между -СО- и -NН2-группами двух пептидных связей внутри одной полипептидной цепи (спиральная конфигурация) или между двумя полипептидными цепями (складчатые слои).

Полностью α-спиральную конфигурацию имеет белок кератин. Это структурный белок волос, шерсти, ногтей, когтей, клюва, перьев и рогов. Спиральная вторичная структура характерна, помимо кератина, для таких фибриллярных (нитевидных) белков, как миозин, фибриноген, коллаген.

У большинства белков спиральные и неспиральные участки полипептидной цепи складываются в трехмерное образование шаровидной формы — глобулу (характерна для глобулярных белков). Глобула определенной конфигурации является третичной структурой белка. Третичная структура стабилизируется ионными, водородными связями, ковалентными дисульфидными связями (которые образуются между атомами серы, входящими в состав цистеина), а также гидрофобными взаимодействиями. Наиболее важными в возникновении третичной структуры являются гидрофобные взаимодействия; белок при этом свертывается таким образом, что его гидрофобные боковые цепи скрыты внутри молекулы, т. е. защищены от соприкосновения с водой, а гидрофильные боковые цепи, наоборот, выставлены наружу.

Многие белки с особо сложным строением состоят из нескольких полипептидных цепей, удерживаемых в молекуле вместе за счет гидрофобных взаимодействий, а также при помощи водородных и ионных связей — возникает четвертичная структура. Такая структура имеется, например, у глобулярного белка гемоглобина. Его молекула состоит из четырех отдельных полипептидных субъединиц (протомеров), находящихся в третичной структуре, и небелковой части — гема. Только в такой структуру гемоглобин способен выполнять свою транспортную функцию.

Под влиянием различных химических и физических факторов (обработка спиртом, ацетоном, кислотами, щелочами, высокой температурой, облучением, высоким давлением и т. д.) происходит изменение третичной и четвертичной структуры белка вследствие разрыва водородных и ионных связей. Процесс нарушения нативной (естественной) структуры белка называется денатурацией. При этом наблюдается уменьшение растворимости белка, изменение формы и размеров молекул, потеря ферментативной активности и т. д. Процесс денатурации иногда обратим, т. е. возвращение нормальных условий среды может сопровождаться самопроизвольным восстановлением естественной структуры белка. Такой процесс называется ренатурацией. Отсюда следует, что все особенности строения и функционирования макромолекулы белка определяются его первичной структурой.

По химическому составу выделяют белки простые и сложные. К простым относятся белки, состоящие только из аминокислот, а к сложным — содержащие белковую часть и небелковую (простатическую) — ионы металлов, углеводы, липиды и др. Простыми белками являются сывороточный альбумин крови, иммуноглобулин (антитела), фибрин, некоторые ферменты (трипсин) и др. Сложными белками являются все протеолипиды и гликопротеиды, гемоглобин, большинство ферментов и т.д.

Функции белков

Структурная. Белки входят в состав клеточных мембран и органелл клетки. Стенки кровеносных сосудов, хрящи, сухожилия, волосы, ногти, когти у высших животных состоят преимущественно из белков.

Каталитическая (ферментативная). Белки-ферменты катализируют протекание всех химических реакций в организме. Они обеспечивают расщепление питательных веществ в пищеварительном тракте, фиксацию углерода при фотосинтезе, реакции матричного синтеза и т. п.

Транспортная. Белки способны присоединять и переносить различные вещества. Альбумины крови транспортируют жирные кислоты, глобулины — ионы металлов и гормоны. Гемоглобин переносит кислород и углекислый газ.

Молекулы белков, входящие в состав плазматической мембраны, принимают участие в транспорте веществ в клетку и из нее.

Защитная. Ее выполняют иммуноглобулины (антитела) крови, обеспечивающие иммунную защиту организма. Фибриноген и тромбин участвуют в свертывании крови и предотвращают кровотечение.

Сократительная. Обеспечивается движением относительно друг друга нитей белков актина и миозина в мышцах и внутри клеток. Скольжение микротрубочек, построенных из белка тубулина, объясняется движение ресничек и жгутиков.

Регуляторная. Многие гормоны являются олигопептидами или белками, например: инсулин, глюкагон, аденокортикотропный гормон и др.

Рецепторная. Некоторые белки, встроенные в клеточную мембрану, способны изменить свою структуру на действие внешней среды. Так происходят прием сигналов из внешней среды и передача информации в клетку. Примером может служить фитохром — светочувствительный белок, регулирующий фотопериодическую реакцию растений, и опсин — составная часть родопсина, пигмента, находящегося в клетках сетчатки глаза.

Читать далее

Строение белков

Среди органических веществ белки, или протеины, — самые многочисленные, наиболее разнообразные и имеющие первостепенное значение биополимеры. На их долю приходится 50 — 80% сухой массы клетки.

Молекулы белков имеют большие размеры, поэтому их называют макромолекулами. Кроме углерода, кислорода, водорода и азота, в состав белков могут входить сера, фосфор и железо.

Белки отличаются друг от друга числом (от ста до нескольких тысяч), составом и последовательностью мономеров. Мономерами белков являются аминокислоты (рис. 1)

Бесконечное разнообразие белков создается за счет различного сочетания всего 20 аминокислот. Каждая аминокислота имеет свое название, особое строение и свойства. Их общую формулу можно представить в следующем виде:

Молекула аминокислоты состоит из двух одинаковых для всех аминокислот частей, одна из которых является аминогруппой (—NH2) с основными свойствами, другая — карбоксильной группой (—COOH) с кислотными свойствами. Часть молекулы, называемая радикалом (R), у разных аминокислот имеет различное строение. Наличие в одной молекуле аминокислоты основной и кислотной групп обусловливает их высокую реакционную способность. через эти группы происходит соединение аминокислот при образовании белка. При этом возникает молекула воды, а освободившиеся электроны образуют пептидную связь. Поэтому белки называют полипептидами.

Молекулы белков могут иметь различные пространственные конфигурации, и в их строении различают четыре уровня структурной организации.

Последовательность аминокислот в составе полипептидной цепи представляет первичную структуру белка. Она уникальна для любого белка и определяет его форму, свойства и функции.
Большинство белков имеют вид спирали в результате образования водородных связей между —CO- и —NH- группами разных аминокислотных остатков полипептидной цепи. Водородные связи малопрочные, но в комплексе они обеспечивают довольно прочную структуру. Эта спираль — вторичная структура белка.

Третичная структура — трехмерная пространственная «упаковка» полипептидной цепи. В результате возникает причудливая, но для каждого белка специфическая конфигурация — глобула. Прочность третичной структуры обеспечивается разнообразными связями, возникающими между радикалами аминокислот.

Четвертичная структура характерна не для всех белков. Она возникает в результате соединения нескольких макромолекул с третичной структурой в сложный комплекс. Например, гемоглобин крови человека представляет комплекс из четырех макромолекул белка.
Такая сложность структуры белковых молекул связана с разнообразием функций, свойственных этим биополимерам.
Нарушение природной структуры белка называют денатурацией. Она может происходить под воздействием температуры, химических веществ, лучистой энергии и других факторов. При слабом воздействии распадается только четвертичная структура, при более сильном — третичная, а затем — вторичная, и белок остается в виде полипептидной цепи.
Этот процесс частично обратим: если не нарушена первичная структура, то денатурированный белок способен восстанавливать свою структуру. Отсюда следует, что все особенность строение макромолекулы белка определяются его первичной структурой.

Кроме простых белков, состоящих только из аминокислот, есть еще и сложные белки

Другие заметки по биологии

Оставьте комментарий