Биосинтез холестерина, как и всех изопреноидов, начинается с ацетил-КоА (см. АТФ). Углеродный скелет C27-стерина строится из C2-звеньев в длинной и сложной последовательности реакций. Биосинтез холестерина можно разделить на четыре этапа. На первом этапе (1) из трёх молекул ацетил-КоА образуется мевалонат (C6). На втором этапе (2) мевалонат превращается в «активный изопрен», изопентенилдифосфат. На третьем этапе (3) шесть молекул изопрена полимеризуются с образованием сквалена (C30). Наконец, сквален циклизуется с отщеплением трёх атомов углерода и превращается в холестерин (4). На схеме представлены только наиболее важные промежуточные продукты биосинтеза.
1. Образование мевалоната. Превращение ацетил-КоА в ацетоацетил-КоА и затем в 3-гидрокси-3-метилглутарил-КоА (3-ГМГ-КоА) соответствует пути биосинтеза кетоновых тел (подробно см. Метаболизм липидов), однако этот процесс происходит не в митохондриях, а в эндоплазматическом ретикулуме (ЭР). 3-ГМГ-КоА восстанавливается с отщеплением кофермента A с участием 3-ГМГ-КоА-редуктазы, ключевого фермента биосинтеза холестерина. На этом важном этапе путём репрессии биосинтеза фермента (эффекторы: гидроксистерины), а также за счёт взаимопревращения молекулы фермента (эффекторы: гормоны) осуществляется регуляция биосинтеза холестерина. Например, фосфорилированная редуктаза представляет собой неактивную форму фермента: инсулин и тироксин стимулируют фермент, глюкагон тормозит; холестерин, поступающий с пищей, также подавляет 3-ГМГ-КоА-редуктазу.
2. Образование изопентенилдифосфата. Мевалонат за счёт декарбоксилирования с потреблением АТФ превращается в изопентенилдифосфат, который и является тем структурным элементом, из которого строятся все изопреноиды.
3. Образование сквалена. Изопентенилдифосфат подвергается изомеризации с образованием диметилаллилдифосфата. Обе C5-молекулы конденсируются в геранилдифосфат и в результате присоединения следующей молекулы изопентенилдифосфата образуют фарнезилдифосфат. При димеризации последнего по типу «голова к голове» образуется сквален. Фарнезилдифосфат является также исходным соединением для синтеза других полиизопреноидов, таких, как долихол и убихинон.
4. Образование холестерина. Сквален, линейный изопреноид, циклизуется с потреблением кислорода в ланостерин, C30-стерин, от которого на последующих стадиях, катализируемых цитохромом P450, отщепляются три метильные группы, вследствие чего образуется конечный продукт — холестерин.
Описанный путь биосинтеза локализован в гладком ЭР. Синтез идёт за счёт энергии, освобождающейся при расщеплении производных кофермента А и энергетически богатых фосфатов. Восстановителем при образовании мевалоната и сквалена, а также на последних стадиях биосинтеза холестерина является НАДФН + Н+. Для этого пути характерно то, что промежуточные метаболиты можно подразделить на три группы: производные кофермента A, дифосфаты и высоко липофильные соединения (от сквалена до холестерина), связанные с переносчиками стеринов.
Содержание
Статьи раздела «Биосинтез холестерина»:
— Следущая статья | — Вернуться в раздел
Структура:
Списки:
Сложность материала:
Величины иединицы:
АХАТ — ацил-КоА-холестерин-ацилтрансфераза ГЭХ — гидролаза эфиров ХС.
Обратный транспорт ХС из клетки с участием ЛПВП
Функцию акцепции и удаления ХС из клетки выполняют ЛПВП. ЛПВП выполняют также и функцию донатора ХС по отношению к гепатоцитам, энте-роцитам, а также — к клеткам стероидогенных тканей — коркового вещества надпочечников и половых желез, снабжая эти клетки ХС для синтеза гормонов.
ЛПВП-частицы содержат апопротеины A-1 и А-2, они богаты белком и ФЛ, содержат относительно мало ХС и ЭХС (3 и 15%, соответственно). ЛПВП осуществляют транспорт ХС из мембраны с помощью следующих механизмов:
1. через водную фазу по градиенту концентрации (так называемая ЛХАТ-
ловушка или основной путь акцепции ХС);
2. путем взаимодействия со специфическими ЛПВП-рецепторамиклеточной мембраны.
ЛХАТ — ловушка
Реакция, катализируемая лецитин-холестерин-ацилтрансферазой (ЛХАТ), заключается в переносе остатка жирной кислоты из 2-го положения лецитина на гидроксильную группу ХС, в результате чего образуются лизолецитин и ЭХС. Исходные субстраты реакции находятся на поверхности ЛПВП-частицы, а образовавшиеся продукты удаляются с ее поверхности: ЭХС вследствие своей гидрофобности перемещается в ядро ЛПВП, а лизолецитин сорбируется на альбумине. Таким образом, в результате ЛХАТ-реакции на поверхности ЛПВП-
частицы уменьшается содержание свободного ХС, в то время как в клеточной мембране или на поверхности ЛП других классов содержание свободного ХС значительно большее. Возникает градиент концентрации свободного ХС между мембраной и поверхностью ЛПВП: [ХСмембраны] > [ХСЛПВП ]. Следовательно, в результате контакта ЛПВП-частицы с мембраной клетки ХС из мембраны переходит на поверхность ЛПВП. Далее, с помощью ЛХАТ, эта молекула ХС вновь подвергнется эстерификации и переместится в ядро частицы, освобождая тем самым место для новых молекул ХС. Таким образом, ЛПВП и ЛХАТ работают как своеобразная «помпа» по откачке ХС из клеточных мембран или ЛП других классов.
Взаимодействие ЛПВП с рецепторами клеточных мембран
Наличие рецепторов к ЛПВП на плазматических мембранах клеток периферических тканей признается многими исследователями. Удалось установить, что на мембранах фибробластов и эндотелиальных клеток, гепатоцитов и других клеток находится специфические мембранные белок с ММ 100-120 кДа, обладающие высоким сродством к ЛПВП. Роль лиганда для этих рецепторов выполняют апопротеины А-1 и А-2, причем связывание с рецептором осуществляют тирозиновые остатки апопротеинов. Отличительная особенность взаимодействия ЛПВП с рецепторами в том, что оно не всегда ведет к захвату и ин-тернализации ЛП-частиц; если же они и поступают внутрь клетки, то только небольшая их часть разрушается, большая часть захваченных ЛПВП подвергается ретроэндоцитозу во внеклеточное пространство. Предполагается, что захватываются ЛПВП; с низким содержанием ХС, а удаляются из клетки ЛПВП2, обогащенные ЭХС.
В целом, взаимодействие ЛПВП с мембранными рецепторами приводит к следующим последствиям:
1 -обеспечивается «откачка» ХС не только из плазматической, но и внутриклеточных мембран;
2 — осуществляется регуляция активности ферментов внутриклеточного
метаболизма ХС: повышается активность ГМГ-КоА-редуктазы (стимулируется
синтез собственного ХС) и снижается активность АХАТ (уменьшается внутри
клеточная эстерификация и депонирование ЭХС).
Важной отличительной особенностью характеризуется взаимодействие ЛПВП с макрофагами. Макрофаги в норме захватывают ЛПНП как рецептор-ным путем, так и путем неспецифического эндоцитоза, поэтому и пути удаления ХС из этих клеток более эффективные и многообразные (рис. 5):
• ретроэндоцитоз ЛПВП;
• экскреция ХС в мультиламеллярных везикулах типа липосом;
• синтез апо-Е и секреция ЛПВП, обогащенных ХС, связанного с апо-Е.
![]() |
Рис. 5. Баланс ХС в макрофагах (по B.C. Репину, В.Н. Смирнову, 1989).
ЛПНП — рецептор
Скэвенджср-рсиептор для модифицированных ЛПНП
Рецептор для бета-ЛПОНП
Рецептор для комплексов ЛПНП-lg
Рецептор для других атсрогснных ЛП, включая ЛП(а)
Эндосома с ЛПНП-частицей
Пул ХС и его эфиров в лизосомах
Пул ХС в цитоплазме (липидные капли)
9. мультимеллярные везикулы с ЭХС
Рецептор для Л ПВП-3
11. ретроэндоцитоз ЛПВП2-частиц, обогащенных ЭХС
АХАТ — ацил-КоА-холестерин-ацилтрансфераза ГЭХ — гидролаза эфиров ХС.
ЛПВП-частицы, обогащенные ХС и апо-Е,направляются в печень, где взаимодействуют с апо-В, Е-рецепторами, интернализуются и разрушаются. Таким образом, апо-Евыступает в роли вектора, направляющего частицы ЛПВП в печень для окисления содержащегося в них ХС.
Доказано, что ХС ЛПВП — предпочтительный субстрат для образования в гепатоцитах желчных кислот.
БИОСИНТЕЗ ХОЛЕСТЕРИНА
Взаимодействие ЛПВП с гепатоцитами, по существу, завершает процесс «обратного» транспорта ХС в организме.
Таким образом, ЛПВП активно забирают ХС из ГМК, фибробластов, макрофагов, эндотелиальных клеток и направляют его в печень для окисления и удаления из организма.
Подводя итоги, можно констатировать, что существующие в норме механизмы регуляции доставки и удаления ХС достаточно эффективно поддерживают ХС гомеостаз отдельной клетки и целостного организма (рис. 6).
Рис. 6. Транспорт ХС липопротеинамн различных классов из печени
Протекает в основном в печени на мембранах эндоплазматического ретикулума гепатоцитов. Этот холестерин — эндогенный. Происходит постоянный транспорт холестерина из печени в ткани. Для построения мембран используется также пищевой (экзогенный) холестерин. Ключевой фермент биосинтеза холестерина — ГМГ-редуктаза (b-гидрокси, b-метил, глутарил-КоА редуктаза). В процессе синтеза холестерина можно условно выделить три этапа (рис. 15)
Образование мевалоната из 3 остатков ацетил-КоА. Ацетил-КоА доставляется в цитоплазму в виде цитрата. Начальная последовательность реакций сходна с реакциями синтеза кетоновых тел, которые в отличие от синтеза холестерина протекают в митохонд-риях. В цитозоле каждая молекула ГМГ-КоА восстанавливается ГМГ-КоА-редуктазой (b-гидрокси, b-метил, глутарил-КоА редуктаза)в мевалонат с использованием 2 молекул NADPH+H+. Эта реакция является основной регуляторной и лимитирует скорость данного метаболического пути.
Рисунок 15
Образование сквалена 6 молекулами мевалоната. В ходе этого этапа из молекул мевалоната (с затратой 3 молекул АТР на 1 молекулу мевалоната) образуются фосфорилированные 5-углеродные изопреноидные производные — изопентенилпирофосфаты, конденсация которых приводит к образованию 30-углеродного соединения — сквалена.
Сквален превращается в холестерин. Сквален циклизуется с образованием полициклического ядра ланостерина, модификация которого сопровождается потерей 3 углеродных атомов, ведет к образованию холестерина.
Все промежуточные реакции синтеза холестерина до образования сквалена протекают в цитозоле клеток. Сквален и последующие метаболиты в водных средах нерастворимы и образуются в мембранном слое эндоплазматического ретикулума с участием ферментов микросомального окисления.
Ключевой регуляторной реакцией синтеза холестерина является превращение ГМГ-КоА в мевалонат. Эту реакцию катализирует ГМГ-КоА-редуктаза, активность которой в тканях может варьировать в широких пределах. Она регулируется:
1. по механизмуфосфорилирования-дефосфорилирования, зависящему от соотношения гормонов инсулин/глюкагон.
холестериды, всасывание холестерина
В фосфорилированной форме ГМГ-КоА-редуктаза полностью не активна;
2. изменением количества фермента, которое контролируется на уровне экспрессии гена. Холестерин, некоторые его оксипроизводные (25-оксихолестерин, 24,25-эпоксихолестерин), кортикостероиды являются низкомолекулярными корепрессорами транскрипции гена ГМГ-КоА-редуктазы.
В промоторной части гена обнаружены участки, к которым присоединяются белки, связан холестерином или его оксипроизводными и блокирующие синтез фермента. Активаторами синтеза ГМГ-КоА-редуктазы являются эстрогены.
Аллостерическое ингибирование ГМГ-редуктазы холестерином не установлено, хотя с холестерина подавляется холестерином ЛНП, поступающим в клетки через ЛНП-рецепторы, и мевалоновой кислотой. В течение дня синтез холестерина и активность ГМГ-КоА-редуктазы варьируют. Холестерин пищи снижает синтез холестерина в печени, но не влияет на биосинтез холестерина в кишечнике.
Синтез и транспорт холестерина в организме
СИНТЕЗ ХОЛЕСТЕРИНА
Протекает в основном в печени на мембранах эндоплазматического ретикулума гепатоцитов. Этот холестерин — эндогенный. Происходит постоянный транспорт холестерина из печени в ткани. Для построения мембран используется также пищевой (экзогенный) холестерин. Ключевой фермент биосинтеза холестерина — ГМГ-редуктаза (бета-гидрокси, бета-метил, глутарил-КоА редуктаза). Этот фермент ингибируется по принципу отрицательной обратной связи конечным продуктом — холестерином.
ТРАНСПОРТ ХОЛЕСТЕРИНА.
Пищевой холестерин транспортируется хиломикронами и попадает в печень.
Биосинтез холестерина и его биохимия
Поэтому печень является для тканей источником и пищевого холестерина (попавшего туда в составе хиломикронов), и эндогенного холестерина.
В печени синтезируются и затем попадают в кровь ЛОНП — липопротеины очень низкой плотности (состоят на 75% из холестерина), а также ЛНП — липопротеины низкой плотности(в их составе есть апобелок апоВ100.
Почти во всех клетках имеются рецепторы для апоВ100. Поэтому ЛНП фиксируются на поверхности клеток. При этом наблюдается переход холестерина в клеточные мембраны. Поэтому ЛНП способны снабжать холестерином клетки тканей.
Помимо этого, происходит и освобождение холестерина из тканей и транспорт его в печень. Транспортируют холестерин из тканей в печень липопротеины высокой плотности (ЛВП). Они содержат очень мало липидов и много белка. Синтез ЛВП протекает в печени. Частицы ЛВП имеют форму диска, и в их составе находятся апобелки апоА, апоС и апоЕ. В кровеносном русле к ЛНП присоединяется белок-фермент лецитинхолестеринацилтрансфераза (ЛХАТ) (смотрите рисунок).
АпоС и апоЕ могут переходить от ЛВП на хиломикроны или ЛОНП. Поэтому ЛВП являются донорами апоЕ и апоС. АпоА является активатором ЛХАТ.
ЛХАТ катализирует следующую реакцию:
![]() |
Это реакция переноса жирной кислоты из положения R2 на холестерин.
Реакция является очень важной, потому что образующийся эфир холестерина является очень гидрофобным веществом и сразу переходит в ядро ЛВП — так при контакте с мембранами клеток ЛВП удаляют из них избыток холестерина. Дальше ЛВП идут в печень, там разрушаются, и избыток холестерина удаляется из организма.
Нарушение соотношения между количеством ЛНП, ЛОНП и ЛВП может вызывать задержку холестерина в тканях. Это приводит к атеросклерозу. Поэтому ЛНП называют атерогенными липопротеинами, а ЛВП — антиатерогенными липопротеинами. При наследственном дефиците ЛВП наблюдаются ранние формы атеросклероза.