Почечный клубочек


Строение почечного клубочка

Клубочек покрыт висцеральным эпителием (подоцитами), который у сосудистого полюса клубочка переходит в париетальный эпителий капсулы Боумена. Боуменово (мочевое) пространство непосредственно переходит в просвет проксимального извитого канальца. Кровь поступает в сосудистый полюс клубочка через афферентную (приносящую) артериолу и, после прохождения по петлям капилляров клубочка, покидает его по эфферентной (выносящей) артериоле, имеющей меньший просвет. Сжатие выносящей артериолы увеличивает гидростатическое давление в клубочке, что способствует фильтрации. Внутри клубочка афферентная артериола подразделяется на несколько ветвей, которые в свою очередь дают начало капиллярам нескольких долек (рис. 1.4 А). В клубочке имеется около 50 капиллярных петель, между которыми были найдены анастомозы, позволяющие функционировать клубочку как «диализирующая система». Стенка капилляра клубочка представляет собой тройной фильтр, включающий фенестрированный эндотелий, гломерулярную базальную мембрану и щелевые диафрагмы между ножками подоцитов (рис.1.4 Б).

А Б

Рисунок 1.4. Строение клубочка (J.C.Jennet 1995). А – клубочек, АА – афферентная артериола (электронная микроскопия). Б – схема строения капиллярной петли клубочка

Прохождение молекул через фильтрационный барьер зависит от их размера и электрического заряда. Вещества с молекулярным весом >50.000 Да почти не фильтруются. Из-за отрицательного заряда в нормальных структурах клубочкового барьера анионы задерживаются в большей степени, чем катионы. Эндотелиальные клетки имеют поры или фенестры диаметром около 70 нм. Поры окружены гликопротеидами, имеющими отрицательный заряд, представляют своеобразное сито, через которые происходит ультрафильтрация плазмы, но задерживаются форменные элементы крови. Гломерулярная базальная мембрана (ГБМ) представляет непрерывный барьер между кровью и полостью капсулы, и у взрослого человека имеет толщину 300-390 нм (у детей тоньше – 150-250 нм) (рис. 1.5). ГБМ так же содержит большое количество отрицательно заряженных гликопротеидов. Она состоит из трех слоев: а) lamina rara externa; б) lamina densa и в) lamina rara interna. Важной структурной частью ГБМ является коллаген IV типа (глава 5). У детей с наследственным нефритом, клинически проявляющимся гематурией, выявляются мутации коллагена IV типа. Патология ГБМ (синдром Альпорта и др) устанавливается электронно-микроскопическим исследованием биоптата почек (рис. 1.5). В настоящее время чаще используются генетические методы.

Рисунок 1.5. Стенка капилляра клубочка – гломерулярный фильтр (J.C.Jennet 1995). Снизу расположен фенестрированный эндотелий, над ним – ГБМ, на которой отчетливо видны регулярно расположенные ножки подоцитов (электронная микроскопия)

Висцеральные эпителиальные клетки клубочка, подоциты, поддерживают архитектуру клубочка, препятствуют прохождению белка в мочевое пространство, а также синтезируют ГБМ. От тела подоцитов отходят длинные первичные отростки (трабекулы), концы которых имеют «ножки», прикрепленные к ГБМ. Малые отростки (педикулы) отходят от больших почти перпендикулярно и закрывают собой свободное от больших отростков пространство капилляра (рис. 1.6 А). Между соседними ножками подоцитов натянута фильтрационная мембрана – щелевая диафрагма, которая в последние десятилетия представляет собой предмет многочисленных исследований (рис. 1.6 Б). Щелевые диафрагмы состоят из белка нефрина, который тесно связан в структурном и функциональном отношениях со множеством других белковых молекул: подоцином, СД2АР, альфа-актинином-4 и др.

А

В

1.6-сурет. Строение подоцита (J.C.Jennet 1995). А – сканирующая электроннограмма. Ножки подоцитов полностью покрывают ГБМ, а также ножки подоцитов между собой образуют сеть. В – между ножками подоцитов расположена щелевая диафрагма, образующая оканчательный барьер фильтрации.

В составе клубочка определяются мезангиальные клетки, основная функция которых – обеспечение механической фиксации капиллярных петель. Мезангиальные клетки обладают сократительной способностью, влияя на клубочковый кровоток, а также обладают фагоцитарной активностью (рис. 1.4-Б).

Почечные канальцы

Первичная моча попадает в проксимальные почечные канальцы и подвергается там качественным и количественным изменениям за счет секреции и реабсорбции веществ. Проксимальные канальцы–самый длинный сегмент нефрона, в начале он сильно изогнут, а при переходе в петлю Генле выпрямляется. Клетки проксимального канальца (продолжение париетального эпителия капсулы клубочка) цилиндрической формы, со стороны просвета покрыты микроворсинками («щеточная кайма»). Здесь происходит активная реабсорбция многих веществ (глюкозы, аминокислот, ионов натрия, калия, кальция и фосфатов). В проксимальные канальцы поступает примерно 180 л клубочкового ультрафильтрата, а 65-80% воды и натрия реабсорбируется обратно. Таким образом, в результате этого значительно уменьшается объем первичной мочи без изменения ее концентрации.

Петля Генле. Прямая часть проксимального канальца, переходит в нисходящее колено петли Генле. Форма эпителиальных клеток становится менее вытянутой, уменьшается число микроворсинок. Восходящий отдел петли имеет тонкую и толстую части и заканчивается в плотном пятне. Основной ионный переносчик этих клеток – NKCC2 ингибируется фуросемидом.

Юкстагломерулярный аппарат (ЮГА) включает 3 типа клеток: клетки дистального канальцевого эпителия на примыкающей к клубочку стороне (плотное пятно), экстрагломеруллярные мезангиальные клетки и гранулярные клетки в стенках афферентных артериол, продуцирующие ренин. (Рис.1.7).

Рисунок 1.7. Схема строения клубочка (J.C.Jennet 1995)

Дистальный каналец.За плотным пятном (macula densa) начинается дистальный каналец, переходящий в собирательную трубку. В дистальных канальцах всасывается около 5% Na первичной мочи. Переносчик ингибируется диуретиками из группы тиазидов.

Собирательные трубкисодержат два типа клеток: основные («светлые») и вставочные («темные»). По мере перехода кортикального отдела трубки в медуллярный уменьшается число вставочных клеток. Основные клетки содержат натриевые каналы, работа которых ингибируется диуретиками – амилоридом, триамтереном. Во вставочных клетках нет Na+/K+-АТФазы, но содержатся Н+-АТФаза. В них осуществляется секреция Н+ и реабсорбция Сl-. Таким образом, в собирательных трубках осуществляется конечный этап обратного всасывания NaCl перед выходом мочи из почек.

Интерстициальные клетки почек. В корковом слое почек интерстиций выражен слабо, тогда как в мозговом слое он более заметен. Корковое вещество почек содержит два типа интерстициальных клеток – фагоцитирующие и фибробластоподобные. Фибробластоподобные интерстициальные клетки продуцируют эритропоэтин. В мозговом веществе почек имеется три типа клеток. В цитоплазме клеток одного из этих типов содержатся мелкие липидные клетки, служащие исходным материалом для синтеза простагландинов.

ФИЗИОЛОГИЯ ПОЧЕК

Почки обеспечивают постоянство среды, необходимой для функционирования клеток организма. Они регулируют водно-солевой баланс, кислотно-щелочное состояние, выделяют продукты азотистого обмена и чужеродные вещества.

Дата добавления: 2017-10-04; просмотров: 702;

Похожие статьи:

Почка млекопитающих структурно состоит из двух слоев: внешнего, коркового, и лежащего под ним мозгового слоя, содержащего наружную и внутреннюю части.

Структурной единицей почки является нефрон, в почке у человека их насчитывается около 1 млн. (схема одного из нефронов представлена на рис.1). Каждый нефрон начинается с двустенной капсулы Шумлянского- Боумена, внутри которой находится клубочек капилляров- гломерула.

Между стенками капсулы имеется полость, от которой начинается проксимальный каналец (ПК). Следующий за проксимальным канальцем отдел нефрона — нисходящая часть петли Генле; она заканчивается шпилькообразным коленом и далее переходит в восходящую часть петли, расположенную параллельно нисходящей; затем идет дистальный каналец (ДК), который возвращается к капсуле своего нефрона и ложится между приносящей и выносящей артериолами, так что его граница с толстой восходящей петлей Генле (область плотного пятна-macula densa) оказывается вблизи приносящей артериолы. Далее моча поступает в собирательные трубки (СТ), которые транзитом проходят через все слои почки и располагаются параллельно петлям Генле. Строго говоря, СТ не являются частью нефрона, так как имеют другое эмбриональное происхождение, но с физиологической точки зрения они рассматриваются как составная часть нефрона.

Рисунок 1 Схема строения нефрона

Запомните: расположение каждой из частей нефрона в почке, так же как и их взаимное расположение, важно для понимания их участия в процессе мочеобразования.

В почке человека и млекопитающих существует несколько типов нефронов, отличающихся по расположению клубочков: поверхностные, интракортикальные (лежащие внутри коркового слоя) и юкстамедуллярные (их клубочки находятся у границы коры мозгового вещества (рис.2). Различие между ними заключается в топографии, длине петли Генле и особенностях кровоснабжения.

Структурно функциональная единица почки — нефрон

Так, юкстамедуллярные нефроны имеют длинную петлю Генле, спускающуюся глубоко во внутреннее мозговое вещество. В силу этих особенностей они будут принимать участие в процессе концентрирования мочи.

Рисунок 2 Виды нефронов

Дата добавления: 2015-06-14; просмотров: 2595; Опубликованный материал нарушает авторские права? | Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Читайте также:

Строение петли Генле. Гистология, функции петли Генле

Петля Генле представляет собой U-образную структуру, в состав которой входят: толстая нисходящая часть, тонкая нисходящая часть, тонкая восходящая части и толстая восходящая часть. Толстая часть по своему строению очень сходна с дистальным извитым канальцем. В наружном отделе мозгового вещества толстая нисходящая часть, наружный диаметр которой составляет около 60 мкм, резко сужается примерно до 12 мкм и продолжается уже в виде тонкой нисходящей части.

Просвет этой части нефрона достаточно широкий, так как его стенка состоит из плоских эпителиальных клеток, ядра которых лишь немного выступают в просвет.

Приблизительно 1/7 всех нефронов — юкстамедуллярные нефроны — получили такое название, поскольку они располагаются около границы между корковым и мозговым веществом.

почечный клубочек

Остальные нефроны известны как корковые нефроны.

Все нефроны принимают участие в процессах фильтрации, всасывания и секреции. Юкстамедуллярные нефроны, однако, играют особо важную роль в создании гипертонического градиента в интерстиции мозгового вещества, который определяет способность почки вырабатывать гипертоническую мочу. Юкстамедуллярные нефроны имеют очень длинную петлю Генле, которая уходит глубоко в мозговое вещество.

Эта петля состоит из короткой толстой нисходящей части, длинных тонких нисходящей и восходящей частей и толстой восходящей части. Напротив, корковые нефроны характеризуются очень короткой тонкой нисходящей частью и отсутствием тонкой восходящей части.

Петля Генле участвует в задержке воды в организме; только животные, почки которых имеют такие петли, способны образовывать гипертоническую мочу и тем самым сохранять воду в организме. Петля Генле создает гипертонический градиент в интерстиции мозгового вещества, который влияет на концентрацию мочи во время ее перемещения по собирательным трубочкам.

Хотя тонкая нисходящая часть петли высокопроницаема для воды, вся восходящая часть является водонепроницаемой. В толстой восходящей части хлорид натрия активно удаляется из канальца, создавая гипертонический градиент в интерстиции мозгового вещества, который необходим для концентрации мочи. Осмолярность интерстиция на кончиках мозговых пирамид примерно в 4 раза выше, чем крови.

— Вернуться в раздел "Гистология"

Оглавление темы "Гистология":

  1. Строение дермы. Гистология, функции
  2. Строение сосудов и нервных окончаний кожи. Гистология, функции
  3. Строение волос. Гистология, функции волоса
  4. Строение ногтей. Гистология, функции ногтя
  5. Строение сальных желез. Гистология, функции сальных желез
  6. Строение потовых желез. Гистология, функции потовой железы
  7. Строение почек. Гистология, функции почки
  8. Строение почечного тельца — нефрона. Гистология, функции нефрона
  9. Строение проксимального извитого канальца почки. Гистология, функции проксимального канальца нефрона
  10. Строение петли Генле. Гистология, функции петли Генле

Нефрон почки

Структурно-функциональной единицей почки является нефрон, состоящий из сосудистого клубочка, его капсулы (почечное тельце) и системы канальцев, ведущих в собирательные трубки (рис.3). Последние морфологически не относятся к нефрону.

Рисунок 3. Схема строения нефрона (8).

В каждой почке человека имеется около 1 млн. нефронов, с возрастом их количество постепенно уменьшается. Клубочки расположены в корковом слое почки, из них 1/10-1/15 часть находятся на границе с мозговым слоем и называются юкстамедуллярными. Они имеют длинные петли Генле, углубляющиеся в мозговое вещество и способствующие более эффективной концентрации первичной мочи. У детей грудного возраста клубочки имеют малый диаметр и их общая фильтрующая поверхность значительно меньше, чем у взрослых.

Строение почечного клубочка

Клубочек покрыт висцеральным эпителием (подоцитами), который у сосудистого полюса клубочка  переходит в париетальный эпителий капсулы Боумена.

Строение и функция нефрона: сосудистый клубочек

Боуменово (мочевое) пространство непосредственно переходит в просвет проксимального извитого канальца. Кровь поступает в сосудистый полюс клубочка через афферентную (приносящую) артериолу и, после прохождения по петлям капилляров клубочка, покидает его по эфферентной (выносящей) артериоле, имеющей меньший просвет. Сжатие выносящей артериолы увеличивает гидростатическое давление в клубочке, что способствует фильтрации. Внутри клубочка афферентная артериола подразделяется на несколько ветвей, которые в свою очередь дают начало капиллярам нескольких долек (рис. 4А). В клубочке имеется около 50 капиллярных петель, между которыми были найдены анастомозы, позволяющие функционировать клубочку как «диализирующая система». Стенка капилляра клубочка представляет собой тройной фильтр, включающий фенестрированный эндотелий, гломерулярную базальную мембрану и щелевые диафрагмы между ножками подоцитов (рис.4Б).

А     Б

Рисунок 4. Строение клубочка (9).

А – клубочек, АА – афферентная артериола (электронная микроскопия).

Б – схема строения капиллярной петли клубочка.

Прохождение молекул через фильтрационный барьер зависит от их размера и электрического заряда. Вещества с молекулярным весом >50.000 Да почти не фильтруются. Из-за отрицательного заряда в нормальных структурах клубочкового барьера анионы задерживаются в большей степени, чем катионы. Эндотелиальные клетки имеют поры или фенестры диаметром около 70 нм. Поры окружены гликопротеидами, имеющими отрицательный заряд, представляют своеобразное сито, через которые происходит ультрафильтрация плазмы, но задерживаются форменные элементы крови. Гломерулярная базальная мембрана (ГБМ) представляет непрерывный барьер между кровью и полостью капсулы, и у взрослого человека имеет толщину 300-390 нм (у детей тоньше – 150-250 нм) (рис. 5). ГБМ так же содержит большое количество отрицательно заряженных гликопротеидов. Она состоит из трех слоев: а) lamina rara externa; б) lamina densa и в) lamina rara interna. Важной структурной частью ГБМ является коллаген IV типа. У детей с наследственным нефритом, клинически проявляющимся гематурией, выявляются мутации коллагена IV типа. Патология ГБМ устанавливается электронно-микроскопическим исследованием биоптата почек.

Рисунок 5. Стенка капилляра клубочка – гломерулярный фильтр (9).

Снизу расположен фенестрированный эндотелий, над ним – ГБМ, на которой отчетливо видны регулярно расположенные ножки подоцитов (электронная микроскопия).

Висцеральные эпителиальные клетки клубочка, подоциты, поддерживают архитектуру клубочка, препятствуют прохождению белка в мочевое пространство, а также синтезируют ГБМ. Это высокоспециализированные клетки мезенхимального происхождения. От тела подоцитов отходят длинные первичные отростки (трабекулы), концы которых имеют «ножки», прикрепленные к ГБМ. Малые отростки (педикулы) отходят от больших почти перпендикулярно и закрывают собой свободное от больших отростков пространство капилляра (рис. 6А). Между соседними ножками подоцитов натянута фильтрационная мембрана – щелевая диафрагма, которая в последние десятилетия представляет собой  предмет многочисленных исследований (рис. 6Б).

А

Б

Рисунок 6. Строение подоцита (9).

А – ножки подоцитов полностью покрывают ГБМ (электронная микроскопия).

Б – схема фильтрационного барьера.

Щелевые диафрагмы состоят из белка нефрина, который тесно связан в структурном и функциональном отношениях со множеством других белковых молекул: подоцином, СД2АР, альфа-актинином-4 и др. В настоящее время установлены мутации генов, кодирующих белки подоцитов. Например, дефекта гена NРНS1 приводит к отсутствию нефрина, что имеет место при врожденном нефротическом синдроме финского типа. Повреждения подоцитов вследствие воздействия вирусных инфекций, токсинов, иммунологических факторов, а также генетических мутаций могут привести к протеинурии и развитию нефротического синдрома, морфологическим эквивалентом которого независимо от причины является расплавление ножек подоцитов. Наиболее частым вариантом нефротического синдрома у детей является идиопатический нефротический синдром с минимальными изменениями.

В состав клубочка входят так же мезангиальные клетки, основная функция которых – обеспечение механической фиксации капиллярных петель. Мезангиальные клетки обладают сократительной способностью, влияя на клубочковый кровоток, а так же фагоцитарной активностью (Рис. 4Б).

Почечные канальцы

Первичная моча попадает в проксимальные почечные канальцы и подвергается там качественным и количественным изменениям за счет секреции и реабсорбции веществ. Проксимальные канальцы – самый длинный сегмент нефрона, в начале он сильно изогнут, а при переходе в петлю Генле выпрямляется. Клетки проксимального канальца (продолжение париетального эпителия капсулы клубочка) цилиндрической формы, со стороны просвета покрыты микроворсинками ("щеточная кайма”). Микроворсинки увеличивают рабочую поверхность эпителиальных клеток, обладающих высокой энзиматической активностью. Они содержат много митохондрий, рибосом и лизосом. Здесь происходит активная реабсорбция многих веществ (глюкозы, аминокислот, ионов натрия, калия, кальция и фосфатов). В проксимальные канальцы поступает примерно 180 л клубочкового ультрафильтрата, а 65-80% воды и натрия реабсорбируется обратно. Таким образом, в результате этого значительно уменьшается объем первичной мочи без изменения ее концентрации. Петля Генле. Прямая часть проксимального канальца, переходит в нисходящее колено петли Генле. Форма эпителиальных клеток становится менее вытянутой, уменьшается число микроворсинок. Восходящий отдел петли имеет тонкую и толстую части и заканчивается в плотном пятне. Клетки стенок толстых сегментов петли Генле крупные, содержат много митохондрий, которые генерируют энергию для активного транспорта ионов натрия и хлора. Основной ионный переносчик этих клеток – NKCC2 ингибируется фуросемидом. Юкстагломерулярный аппарат (ЮГА) включает 3 типа клеток: клетки дистального канальцевого эпителия на примыкающей к клубочку стороне (плотное пятно), экстрагломеруллярные мезангиальные клетки и гранулярные клетки в стенках афферентных артериол, продуцирующие ренин. (Рис. 7).

Дистальный каналец. За плотным пятном (macula densa) начинается дистальный каналец, переходящий в собирательную трубку. В дистальных канальцах всасывается около 5% Na первичной мочи. Переносчик ингибируется диуретиками из группы тиазидов. Собирательные трубки имеют три отдела: кортикальный, наружный и внутренний медуллярный. Внутренние медуллярные участки собирательной трубки впадают в сосочковый проток, открывающийся в малую чашечку. Собирательные трубки содержат два типа клеток: основные («светлые») и вставочные («темные»). По мере перехода кортикального отдела трубки в медуллярный уменьшается число вставочных клеток. Основные клетки содержат натриевые каналы, работа которых ингибируется диуретиками амилоридом, триамтереном. Во вставочных клетках нет Na+/K+-АТФазы, но содержатся Н+-АТФаза. В них осуществляется секреция Н+ и реабсорбция Сl-. Таким образом, в собирательных трубках осуществляется конечный этап обратного всасывания NaCl перед выходом мочи из почек.

Интерстициальные клетки почек. В корковом слое почек интерстиций выражен слабо, тогда как в мозговом слое он более заметен. Корковое вещество почек содержит два типа интерстициальных клеток – фагоцитирующие и фибробластоподобные. Фибробластоподобные интерстициальные клетки продуцируют эритропоэтин. В мозговом веществе почек имеется три типа клеток. В цитоплазме клеток одного из этих типов содержатся мелкие липидные клетки, служащие исходным материалом для синтеза простагландинов.



Почка имеет сложное строение и состоит примерно из 1 миллиона структурных и функциональных единиц — нефронов (рис.100). Между нефронами находится соединительная (интерстициальная) ткань.

 

Функциональной единицей нефрон является потому, что он способен осуществить всю совокупность процессов, результатом которых является образование мочи.

Рис. 100. Схема строения нефрона (по Г. Смиту). 1 — клубочек; 3 — извитой каналец первого порядка; 3 — нисходящая часть петли Генле; 4 — восходящая часть петли Генле; 5 — извитой каналец второго порядка; 6 — собирательные трубки. В кружках изображено строение эпителия в различных частях нефрона.

Каждый нефрон начинается небольшой капсулой, имеющей форму двухстенной чаши (капсула Шумлянского-Боумена), внутри которой находится клубочек капиляров (мальпигиев клубочек).

Между стенками капсулы имеется полость, от которой начинается просвет канальца. Внутренний листок капсулы образован плоскими мелкими эпителиальными клетками. Как показали электронномикроскопические исследования, эти клетки, между которыми имеются щели, расположены на базальной мембране, состоящей из трех слоев молекул.

В клетках эндотелия капилляров мальпигиевого клубочка и отверстия диаметром около 0,1 мк. Таким образом, барьер между кровью, находящейся в капиллярах клубочка, и полостью капсулы образованы тонкой базальной мембраной.

От полости капсулы отходит мочевой каналец, имеющий вначале извитую форму, — извитой каналец первого порядка. Дойдя до границы между корковым и мозговым слоем, каналец суживается и выпрямляется. В мозговом слое почки он образует петлю Генле и возвращается в корковый слой почки. Таким образом, петля Генле состоит из нисходящей, или проксимальной, и восходящей, или дистальной, части.

В корковом слое почки или на границе мозгового и коркового слоев прямой каналец вновь приобретает извитую форму, образуя извитой каналец второго порядка. Последний впадает в выводной проток—собирательную рубку. Значительное количество таких собирательных трубок, сливаясь, образует общие выводные протоки, которые проходят через мозговой слой почки к верхушкам сосочков, выступающим в полость почечной лоханки.

Диаметр каждой капсулы Шумлянского-Боумена около 0,2 мм, а общая длина канальцев одного нефрона достигает 35—50 мм.

Кровоснабжение почек. Артерии почек, разветвляясь на все более мелкие сосуды, образуют артериолы, каждая из которых входит в капсулу Шумлянского-Боумена и здесь распадается примерно на 50 капиллярных петель, образующих мальпигиев клубочек.

Сливаясь вместе, капилляры вновь образуют артериолу, выходящую из клубочка. Артериола, доставляющая кровь к клубочку, называется приносящим сосудом (vas affereos). Артериола, по которой кровь оттекает из клубочка, называется выносящим сосудом (vas efferens). Диаметр артериолы, выходящей из капсулы, уже, чем приходящей в капсулу. Вышедшая из клубочка артериола на коротком расстоянии от него вновь разветвляется на капилляры и образует густую капиллярную сеть, оплетающую извитые канальцы первого и второго порядка (рис. 101, А). Таким образом кровь, прошедшая через капилляры клубочка, проходит затем через капилляры канальцев. Кроме того, кровоснабжение канальцев осуществляется капиллярами, отходящими от небольшого числа артериол, которые не учавствуют в образовании мальпигиевого клубочка.

Пройдя через сеть капилляров канальцев, кровь поступает в мелкие вены, которые, сливаясь, образуют дуговые вены (venae arcuatae). При дальнейшем слиянии последних образуется почечная вена, впадающая в нижнюю полую вену.

 

Юкстамедуллярные нефроны. В сравнительно недавнее время показано, что в почке имеются, кроме описанных выше нефронов, еще и другие, отличающиеся по положению и кровоснабжению,— юкстамедуллярные нефроны. Юкстамедуллярные нефроны расположены почти целиком в мозговом слое почки. Их клубочки находятся между корковым и мозговым слоем, а петля Генле располагается у границы с почечной лоханкой.

Кровоснабжение юкстамедуллярного нефрона отличается от кровоснабжения коркового нефрона тем, что диаметр выносящего сосуда такой же, как и приносящего. Выходящая из клубочка артериола не образует капиллярной сети вокруг канальцев, а пройдя некоторый путь, впадает в венозную систему (рис. 101, Б).

Юкстагломерулярный комплекс. В стенке приводящей артериолы у места ее вхождения в клубочек имеется утолщение, образованное миоэпителиальными клетками,— юкстагломерулярный (околоклубочковый) комплекс. Клетки этого комплекса обладают внутрисекреторной функцией, выделяя при уменьшении почечного кровотока ренин (стр. 123), участвующий в регуляции уровня артериального давления и имеющий, по-видимому, значение в поддержании нормального баланса электролитов.

Рис. 101. Схема коркового (А) и юкстамедуллярного (Б) нефронов и их кровоснабжения (по Г.

Строение почечного клубочка

Смиту). I — корневое вещество почки; II — мозговое вещество почки. 1 — артерии; 2 — клубочек и капсула; 3 — артериола, подходящая к мальпигиевому клубочку; 4 — артериола, выходящая из мальпигиевого клубочка и образующая капиллярную сеть вокруг канальцев коркового нефроны; 5 — артериола, выходящая из мальпигиевого клубочка юкстамедуллярного нефрона; 6 — венулы; 7 — собирательные трубки.

Почечные канальцы

Почечные канальцы — раздел Медицина, КЛИНИЧЕСКАЯ МОРФОЛОГИЯ И ФИЗИОЛОГИЯ ПОЧЕК Первичная Моча Попадает В Проксимальные Почечные Канальцы И Подвергается Там …

Первичная моча попадает в проксимальные почечные канальцы и подвергается там качественным и количественным изменениям за счет секреции и реабсорбции веществ. Проксимальные канальцы–самый длинный сегмент нефрона, в начале он сильно изогнут, а при переходе в петлю Генле выпрямляется. Клетки проксимального канальца (продолжение париетального эпителия капсулы клубочка) цилиндрической формы, со стороны просвета покрыты микроворсинками („щеточная кайма”). Микроворсинки увеличивают рабочую поверхность эпителиальных клеток, обладающих высокой энзиматической активностью. Они содержат много митохондрий, рибосом и лизосом. Здесь происходит активная реабсорбция многих веществ (глюкозы, аминокислот, ионов натрия, калия, кальция и фосфатов). В проксимальные канальцы поступает примерно 180 л клубочкового ультрафильтрата, а 65-80% воды и натрия реабсорбируется обратно. Таким образом, в результате этого значительно уменьшается объем первичной мочи без изменения ее концентрации. Петля Генле. Прямая часть проксимального канальца, переходит в нисходящее колено петли Генле. Форма эпителиальных клеток становится менее вытянутой, уменьшается число микроворсинок. Восходящий отдел петли имеет тонкую и толстую части и заканчивается в плотном пятне. Клетки стенок толстых сегментов петли Генле крупные, содержат много митохондрий, которые генерируют энергию для активного транспорта ионов натрия и хлора. Основной ионный переносчик этих клеток – NKCC2 ингибируется фуросемидом. Юкстагломерулярный аппарат (ЮГА) включает 3 типа клеток: клетки дистального канальцевого эпителия на примыкающей к клубочку стороне (плотное пятно), экстрагломеруллярные мезангиальные клетки и гранулярные клетки в стенках афферентных артериол, продуцирующие ренин. (Рис. 7).

     
   
 
 

Рисунок 7. Схема строения клубочка (9).

Дистальный каналец.За плотным пятном (macula densa) начинается дистальный каналец, переходящий в собирательную трубку. В дистальных канальцах всасывается около 5% Na первичной мочи. Переносчик ингибируется диуретиками из группы тиазидов. Собирательные трубкиимеют три отдела: кортикальный, наружный и внутренний медуллярный. Внутренние медуллярные участки собирательной трубки впадают в сосочковый проток, открывающийся в малую чашечку. Собирательные трубки содержат два типа клеток: основные («светлые») и вставочные («темные»). По мере перехода кортикального отдела трубки в медуллярный уменьшается число вставочных клеток. Основные клетки содержат натриевые каналы, работа которых ингибируется диуретиками амилоридом, триамтереном. Во вставочных клетках нет Na+/K+-АТФазы, но содержатся Н+-АТФаза. В них осуществляется секреция Н+ и реабсорбция Сl-. Таким образом, в собирательных трубках осуществляется конечный этап обратного всасывания NaCl перед выходом мочи из почек.

Интерстициальные клетки почек. В корковом слое почек интерстиций выражен слабо, тогда как в мозговом слое он более заметен.

Почечные клубочки

Корковое вещество почек содержит два типа интерстициальных клеток – фагоцитирующие и фибробластоподобные. Фибробластоподобные интерстициальные клетки продуцируют эритропоэтин. В мозговом веществе почек имеется три типа клеток. В цитоплазме клеток одного из этих типов содержатся мелкие липидные клетки, служащие исходным материалом для синтеза простагландинов.

– Конец работы –

Эта тема принадлежит разделу:

КЛИНИЧЕСКАЯ МОРФОЛОГИЯ И ФИЗИОЛОГИЯ ПОЧЕК

Казахский национальный медицинский университет… им С Д Асфендиярова… А Б Канатбаева А А Нурбекова А Е Наушабаева К А Кабулбаев…

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ: Почечные канальцы

Все темы данного раздела:

И ФИЗИОЛОГИЯ ПОЧЕК
(учебное пособие)   Алматы, 2009 г.     УДК: 616.61-071.3-053+612.46 ББК: 56.9 Г: К 15  

СПИСОК СОКРАЩЕНИЙ
  АД артериальное давление АДГ антидиуретический гормон АКТГ адренокортикотропный гормон ГБМ гломерулярная базальная мембрана НД нефрогенный несаха

Строение почечного клубочка
Клубочек покрыт висцеральным эпителием (подоцитами), который у сосудистого полюса клубочка переходит в париетальный эпителий капсулы Боумена. Боуменово (мочевое) пространство непосредственно перехо

ФИЗИОЛОГИЯ ПОЧЕК
Почки обеспечивают постоянство среды, необходимой для функционирования клеток организма. Они регулируют водно-солевой баланс, кислотно-щелочное равновесие, выделяют продукты азотистого обмена и чуж

ДРУГИЕ ФУНКЦИИ ПОЧЕК
Функции почек многообразны. Они обладают не только экскретирующей, но и секретирующей функцией. В почках синтезируются ряд гормонов и другие активные вещества. В почечной ткани происходит катаболиз

ГОРМОНЫ И ПОЧКИ
Почки и эндокринная система тесно взаимосвязаны. В почках синтезируется ряд гормонов (ренин, витамин Д3, эритропоэтин и др.) Для некоторых гормонов почки служат органом-мишенью, другие ж

ГОРМОНЫ, ОБРАЗУЮЩИЕСЯ В ПОЧКАХ
Ренин-ангиотензин-альдостероновая система (РААС).Ренин вырабатывается в юкстагломерулярном аппарате почек (ЮГА), находящемся в тесном контакте со специальной частью дистальных кана

ЭКСТРАРЕНАЛЬНЫЕ ГОРМОНЫ, ДЕЙСТВУЮЩИЕ НА ПОЧКИ
Альдостерон, кортизол, минералокортикоиды.Почки содержат рецепторы для всех стероидных гормонов: альдостерона, глюкокортикоидов, эстрогенов, тестостерона. Выработка минералокортико

Паратгормон и кальцитонин
Паратиреоидный гормон (ПТГ), синтезируемый паращитовидными железами в ответ на низкую концентрацию ионизированного кальция, оказывает влияние на кишечник, кости и почки. 1. ПТГ способствуе

Гормональные изменения при ХПН
Гормональные изменения, вызванные утратой почечной функции, многообразны и сложны. Выделяют 4 механизма эндокринных нарушений, наблюдаемых в конечные стадии ХБП (ХПН): 1. Снижение выработк

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Оставьте комментарий