Плавательный пузырь у рыб используется в качестве


Плавательный пузырь — рыба

Cтраница 1

Плавательные пузыри рыб заполнены воздухом, который хорошо рассеивает ультразвуковые волны. Это позволяет с помощью эхолота обнаруживать косяки рыб.  [1]

Плавательный пузырь рыбы легко меняет свой объем. Когда рыба с помощью мышц опускается на большую глубину и давление воды на нее увеличивается, пузырь сжимается, объем тела рыбы уменьшается и она не выталкивается вверх, а плавает в глубине. При подъеме плавательный пузырь и объем всего тела рыбы увеличиваются и она плавает уже на меньшей глубине. Таким образом рыба может в определенных пределах регулировать глубину своего погружения. Киты регулируют глубину своего погружения за счет уменьшения и увеличения объема легких.  [2]

Такое упрощенное представление о назначении плавательного пузыря рыб восходит ко временам ученых Флорентийской академии ( XVII век) и было высказано профессором Борелли в 1685 г. В течение более чем 200 лет оно принималось без возражений, успело укорениться, и только трудами исследователей Моро и Шарбонеля была обнаружена полная несостоятельность этой теории.  [3]

Любопытно, что в воздухе плавательного пузыря рыб аргона находят больше, чем в атмосферном воздухе.  [4]

О том, какую роль выполняет плавательный пузырь рыб, обыкновенно говорят и пишут — казалось бы, вполне правдоподобно — следующее.  [6]

Свойством полупроницаемости обладают некоторые животные пленки ( бычий пузырь, плавательный пузырь рыб, протоплазма живых клеток), а также пленки, полученные искусственным путем, например, из коллодия, целлофана, пергамента и др. Полупроницаемой является пленка из соли Cu2 [ Fe ( CN) 6 ], находящейся в порах глиняного сосуда.  [7]

Наиболее замечательный пример секреции газов [20] представляют явления, происходящие в плавательном пузыре глубоководных рыб. Рыба уравновешивает давление окружающей ее воды, создавая в своем пузыре равное давление газа. У глубоководных рыб этот газ состоит главным образом из кислорода, и давление его может достигать нескольких сот атмосфер. Между тем кислород рыба получает из воды, где он находится не в большей концентрации, чем та, которая соответствует равновесию с атмосферным воздухом. Потребляемый из воды кислород поглощается гемоглобином крови, а затем специальная кислородная железа производит секрецию его в плавательный пузырь.  [8]

Рыбий клей высших сортов получают размачиванием в теплой воде или в известковом молоке внутренней оболочки плавательного пузыря рыб. Для этого плавательный пузырь разрезают вдоль и тщательно промывают, соскабливая внешний слой и кровеносные сосуды. Оболочку расправляют на досках и сушат на солнце внутренней стороной вверх.  [9]

Животный клей получается в результате переработки обезжиренных костей или соединительной ткани животных ( мездры) и обрезков кожи, а также высушенных плавательных пузырей рыб. В зависимости от сырья клей называется костный, мездровый и рыбий. В малярном деле обычно применяют костный и мездровый клей.  [10]

Другими словами, пузырь помогает рыбе в неподвижном положении сохранять равновесие, но равновесие это неустойчивое. Такова истинная роль плавательного пузыря рыб — поскольку речь идет о его отношении к плаванию; выполняет ли он также и другие функции в организме рыбы и какие именно — неизвестно, так что орган этот все же является пока загадочным.  [11]

Так называемый рыбий клей, который получали из плавательных пузырей рыб, очевидно, был первым клеем, изготовленным человеком. Известно о его применении еще в Древнем Египте.  [12]

К коллагеновым клеям принадлежит также пищевой и жидкий ( технический) рыбий клей. Пищевой клей представляет собой полупрозрачные пластинки, изготовленные из доброкачественных плавательных пузырей рыб осетровых и сомовых пород. Он применяется для осветления мутных жидкостей ( например, вин) и других целей. Жидкий рыбий клей изготовляют из чешуи, костей и плавательных пузырей разных пород рыб. Он представляет собой густую жидкость, клеящая способность которой значительно ниже, чем мездрового и костного клеев. Жидкий рыбий клей обычно применяется в качестве добавки к другим клеям.  [13]

Чтобы прекратить подъем или опуститься вниз, она, напротив, сжимает свой плавательный пузырь. Объем тела, а с ним и вес вытесняемой воды уменьшаются, и рыба опускается на дно согласно закону Архимеда. Такое упрощенное представление о назначении плавательного пузыря рыб восходит ко временам ученых Флорентийской академии ( XVII век) и было высказано профессором Борелли в 1685 г. В течение более чем 200 лет оно принималось без возражений, успело укорениться, и только трудами исследователей Моро и Шарбонеля была обнаружена полная несостоятельность этой теории.  [14]

Другой причиной ослабления звука служит затухание звуковой волны при ее распространении в морской воде. Энергия волны переходит в тепло из-за вязкости воды, а также других необратимых процессов. Кроме того, звуковая волна рассеивается в океане на различных неоднородностях, которыми могут служить взвешенные в воде частицы, пузырьки воздуха, планктон и даже плавательные пузыри рыб.  [15]

Страницы:      1    2

ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ И ГИДРОДИНАМИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

Плавучесть рыб (отношение плотности тела рыбы к плотности воды) может быть нейтральной (0), положительной или отрицательной. У большинства видов плавучесть колеблется от +0,03 до –0,03. При положительной плавучести рыбы всплывают, при нейтральной парят в толще воды, при отрицательной погружаются.

Рис. 10. Плавательный пузырь карповых.

Нейтральная плавучесть (или гидростатическое равновесие) у рыб достигается:

1) при помощи плавательного пузыря;

2) обводнением мышц и облегчением скелета (у глубоководных рыб)

3) накоплением жира (акулы, тунцы, скумбрии, камбалы, бычки, вьюны и т.д.).

Большинство рыб имеют плавательный пузырь. Его возникновение связывают с появлением костного скелета, который увеличивает удельный вес костных рыб. У хрящевых рыб плавательный пузырь отсутствует, из костистых его нет у донных (бычки, камбалы, пинагор), глубоководных и некоторых быстроплавающих видов (тунец, пеламида, скумбрия). Дополнительным гидростатическим приспособлением у этих рыб является подъемная сила, которая образуется за счет мускульных усилий.

Плавательный пузырь образуется в результате выпячивания дорзальной стенки пищевода, его основная функция – гидростатическая. Плавательный пузырь воспринимает также изменения давления, имеет непосредственное отношение к органу слуха, являясь резонатором и рефлектором звуковых колебаний. У вьюновых плавательный пузырь покрыт костной капсулой, утратил гидростатическую функцию, и приобрел способность воспринимать изменения атмосферного давления. У двоякодышащих и костных ганоидов плавательный пузырь выполняет функцию дыхания. Некоторые рыбы способны при помощи плавательного пузыря издавать звуки (треска, мерлуза).

Плавательный пузырь представляет собой относительно большой эластичный мешок, который расположен под почками. Он бывает:

1) непарный (большинство рыб);

2) парный (двоякодышащие и многоперы).

У многих рыб плавательный пузырь однокамерный (лососевые), у некоторых видов двухкамерный (карповые) или трехкамерный (ошибень), камеры между собой сообщаются. У ряда рыб отплавательного пузыря отходят слепые отростки, соединяющие его с внутренним ухом (сельдевые, тресковые и др.).

Плавательный пузырь заполнен смесью кислорода, азота и углекислого газа. Соотношение газов в плавательном пузыре у рыб различается и зависит от вида рыб, глубины обитания, физиологического состояния и др. У глубоководных рыб в плавательном пузыре содержится значительно больше кислорода, чем у видов, обитающих ближе к поверхности. Рыбы с плавательным пузырем делятся на открытопузырных и закрытопузырных. У открытопузырных рыб плавательный пузырь соединяется с пищеводом с помощью воздушного протока. К ним относятся – двоякодышащие, многоперы, хрящевые и костные ганоиды, из костистых – сельдеобразные, карпообразные, щукообразные. У атлантической сельди, шпрота и хамсы помимо обычного воздушного протока имеется второй проток позади анального отверстия, который соединяет заднюю часть плавательного пузыря с внешней средой. У закрытопузырных рыб воздушный проток отсутствует (окунеобразные, трескообразные, кефалеобразные и др.). Первоначальное заполнение плавательного пузыря газами у рыб происходит при заглатывании личинкой атмосферного воздуха. Так, у личинок карпа это имеет место через 1–1,5 суток после вылупления.

Принцип работы плавательного пузыря у рыбы.

Если этого не происходит, развитие личинки нарушается и она гибнет. У закрытопузырных рыб плавательный пузырь со временем утрачивает связь с наружной средой, у открытопузырных воздушный проток сохраняется в течение всей жизни. Регулирование объема газов в плавательном пузыре у закрыто пузырных рыб происходит при помощи двух систем:

1) газовая железа (наполняет пузырь газами из крови);

2) овал (поглощает газы из пузыря в кровь).

Газовая железа – система артериальных и венозных сосудов, расположенных в передней части плавательного пузыря. Овал участок во внутренней оболочке плавательного пузыря с тонкими стенками, окруженный мышечным сфинктером, расположен в задней части пузыря. При расслаблении сфинктера газы из плавательного пузыря поступают к среднему слою его стенки, где имеются венозные капилляры и происходит их диффузия в кровь. Количество поглощаемых газов регулируется изменением величины отверстия овала.

При погружении закрытопузырных рыб объем газов в их плавательном пузыре уменьшается, и рыбы приобретают отрицательную плавучесть, но по достижении определенной глубины адаптируются к ней путем выделения газов в плавательный пузырь через газовую железу. При подъеме рыбы, когда давление уменьшается, объем газов в плавательном пузыре увеличивается, избыток их поглощается через овал в кровь, а затем через жабры удаляется в воду. У открытопузырных рыб овала нет, избыток газов выводится наружу через воздушный проток. Большинство открытопузырных рыб не имеют газовой железы (сельдевые, лососевые). Секреция газов из крови в пузырь развита слабо и осуществляется с помощью эпителия, расположенного на внутреннем слое пузыря. Многие открытопузырные рыбы для обеспечения на глубине нейтральной плавучести перед погружением захватывают воздух. Однако при сильных погружениях его бывает недостаточно, и наполнение плавательного пузыря происходит газами, поступающими из крови.

Дата добавления: 2016-05-25; просмотров: 778;

ПОСМОТРЕТЬ ЕЩЕ:

ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ И ГИДРОДИНАМИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

Плавучесть рыб (отношение плотности тела рыбы к плотности воды) может быть нейтральной (0), положительной или отрицательной. У большинства видов плавучесть колеблется от +0,03 до –0,03. При положительной плавучести рыбы всплывают, при нейтральной парят в толще воды, при отрицательной погружаются.

Рис. 10. Плавательный пузырь карповых.

Нейтральная плавучесть (или гидростатическое равновесие) у рыб достигается:

1) при помощи плавательного пузыря;

2) обводнением мышц и облегчением скелета (у глубоководных рыб)

3) накоплением жира (акулы, тунцы, скумбрии, камбалы, бычки, вьюны и т.д.).

Большинство рыб имеют плавательный пузырь. Его возникновение связывают с появлением костного скелета, который увеличивает удельный вес костных рыб. У хрящевых рыб плавательный пузырь отсутствует, из костистых его нет у донных (бычки, камбалы, пинагор), глубоководных и некоторых быстроплавающих видов (тунец, пеламида, скумбрия). Дополнительным гидростатическим приспособлением у этих рыб является подъемная сила, которая образуется за счет мускульных усилий.

Плавательный пузырь образуется в результате выпячивания дорзальной стенки пищевода, его основная функция – гидростатическая. Плавательный пузырь воспринимает также изменения давления, имеет непосредственное отношение к органу слуха, являясь резонатором и рефлектором звуковых колебаний. У вьюновых плавательный пузырь покрыт костной капсулой, утратил гидростатическую функцию, и приобрел способность воспринимать изменения атмосферного давления. У двоякодышащих и костных ганоидов плавательный пузырь выполняет функцию дыхания. Некоторые рыбы способны при помощи плавательного пузыря издавать звуки (треска, мерлуза).

Плавательный пузырь представляет собой относительно большой эластичный мешок, который расположен под почками. Он бывает:

1) непарный (большинство рыб);

2) парный (двоякодышащие и многоперы).

У многих рыб плавательный пузырь однокамерный (лососевые), у некоторых видов двухкамерный (карповые) или трехкамерный (ошибень), камеры между собой сообщаются. У ряда рыб отплавательного пузыря отходят слепые отростки, соединяющие его с внутренним ухом (сельдевые, тресковые и др.).

Плавательный пузырь заполнен смесью кислорода, азота и углекислого газа. Соотношение газов в плавательном пузыре у рыб различается и зависит от вида рыб, глубины обитания, физиологического состояния и др. У глубоководных рыб в плавательном пузыре содержится значительно больше кислорода, чем у видов, обитающих ближе к поверхности.

ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ И ГИДРОДИНАМИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

Рыбы с плавательным пузырем делятся на открытопузырных и закрытопузырных. У открытопузырных рыб плавательный пузырь соединяется с пищеводом с помощью воздушного протока. К ним относятся – двоякодышащие, многоперы, хрящевые и костные ганоиды, из костистых – сельдеобразные, карпообразные, щукообразные. У атлантической сельди, шпрота и хамсы помимо обычного воздушного протока имеется второй проток позади анального отверстия, который соединяет заднюю часть плавательного пузыря с внешней средой. У закрытопузырных рыб воздушный проток отсутствует (окунеобразные, трескообразные, кефалеобразные и др.). Первоначальное заполнение плавательного пузыря газами у рыб происходит при заглатывании личинкой атмосферного воздуха. Так, у личинок карпа это имеет место через 1–1,5 суток после вылупления. Если этого не происходит, развитие личинки нарушается и она гибнет. У закрытопузырных рыб плавательный пузырь со временем утрачивает связь с наружной средой, у открытопузырных воздушный проток сохраняется в течение всей жизни. Регулирование объема газов в плавательном пузыре у закрыто пузырных рыб происходит при помощи двух систем:

1) газовая железа (наполняет пузырь газами из крови);

2) овал (поглощает газы из пузыря в кровь).

Газовая железа – система артериальных и венозных сосудов, расположенных в передней части плавательного пузыря. Овал участок во внутренней оболочке плавательного пузыря с тонкими стенками, окруженный мышечным сфинктером, расположен в задней части пузыря. При расслаблении сфинктера газы из плавательного пузыря поступают к среднему слою его стенки, где имеются венозные капилляры и происходит их диффузия в кровь. Количество поглощаемых газов регулируется изменением величины отверстия овала.

При погружении закрытопузырных рыб объем газов в их плавательном пузыре уменьшается, и рыбы приобретают отрицательную плавучесть, но по достижении определенной глубины адаптируются к ней путем выделения газов в плавательный пузырь через газовую железу. При подъеме рыбы, когда давление уменьшается, объем газов в плавательном пузыре увеличивается, избыток их поглощается через овал в кровь, а затем через жабры удаляется в воду. У открытопузырных рыб овала нет, избыток газов выводится наружу через воздушный проток. Большинство открытопузырных рыб не имеют газовой железы (сельдевые, лососевые). Секреция газов из крови в пузырь развита слабо и осуществляется с помощью эпителия, расположенного на внутреннем слое пузыря. Многие открытопузырные рыбы для обеспечения на глубине нейтральной плавучести перед погружением захватывают воздух. Однако при сильных погружениях его бывает недостаточно, и наполнение плавательного пузыря происходит газами, поступающими из крови.

Дата добавления: 2016-05-25; просмотров: 783;

ПОСМОТРЕТЬ ЕЩЕ:

ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ И ГИДРОДИНАМИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

Плавучесть рыб (отношение плотности тела рыбы к плотности воды) может быть нейтральной (0), положительной или отрицательной. У большинства видов плавучесть колеблется от +0,03 до –0,03. При положительной плавучести рыбы всплывают, при нейтральной парят в толще воды, при отрицательной погружаются.

Рис. 10. Плавательный пузырь карповых.

Нейтральная плавучесть (или гидростатическое равновесие) у рыб достигается:

1) при помощи плавательного пузыря;

2) обводнением мышц и облегчением скелета (у глубоководных рыб)

3) накоплением жира (акулы, тунцы, скумбрии, камбалы, бычки, вьюны и т.д.).

Большинство рыб имеют плавательный пузырь. Его возникновение связывают с появлением костного скелета, который увеличивает удельный вес костных рыб. У хрящевых рыб плавательный пузырь отсутствует, из костистых его нет у донных (бычки, камбалы, пинагор), глубоководных и некоторых быстроплавающих видов (тунец, пеламида, скумбрия). Дополнительным гидростатическим приспособлением у этих рыб является подъемная сила, которая образуется за счет мускульных усилий.

Плавательный пузырь образуется в результате выпячивания дорзальной стенки пищевода, его основная функция – гидростатическая. Плавательный пузырь воспринимает также изменения давления, имеет непосредственное отношение к органу слуха, являясь резонатором и рефлектором звуковых колебаний. У вьюновых плавательный пузырь покрыт костной капсулой, утратил гидростатическую функцию, и приобрел способность воспринимать изменения атмосферного давления. У двоякодышащих и костных ганоидов плавательный пузырь выполняет функцию дыхания. Некоторые рыбы способны при помощи плавательного пузыря издавать звуки (треска, мерлуза).

Плавательный пузырь представляет собой относительно большой эластичный мешок, который расположен под почками.

Зачем рыбе плавательный пузырь?

Он бывает:

1) непарный (большинство рыб);

2) парный (двоякодышащие и многоперы).

У многих рыб плавательный пузырь однокамерный (лососевые), у некоторых видов двухкамерный (карповые) или трехкамерный (ошибень), камеры между собой сообщаются. У ряда рыб отплавательного пузыря отходят слепые отростки, соединяющие его с внутренним ухом (сельдевые, тресковые и др.).

Плавательный пузырь заполнен смесью кислорода, азота и углекислого газа. Соотношение газов в плавательном пузыре у рыб различается и зависит от вида рыб, глубины обитания, физиологического состояния и др. У глубоководных рыб в плавательном пузыре содержится значительно больше кислорода, чем у видов, обитающих ближе к поверхности.

Рыбы с плавательным пузырем делятся на открытопузырных и закрытопузырных. У открытопузырных рыб плавательный пузырь соединяется с пищеводом с помощью воздушного протока. К ним относятся – двоякодышащие, многоперы, хрящевые и костные ганоиды, из костистых – сельдеобразные, карпообразные, щукообразные. У атлантической сельди, шпрота и хамсы помимо обычного воздушного протока имеется второй проток позади анального отверстия, который соединяет заднюю часть плавательного пузыря с внешней средой. У закрытопузырных рыб воздушный проток отсутствует (окунеобразные, трескообразные, кефалеобразные и др.). Первоначальное заполнение плавательного пузыря газами у рыб происходит при заглатывании личинкой атмосферного воздуха. Так, у личинок карпа это имеет место через 1–1,5 суток после вылупления. Если этого не происходит, развитие личинки нарушается и она гибнет. У закрытопузырных рыб плавательный пузырь со временем утрачивает связь с наружной средой, у открытопузырных воздушный проток сохраняется в течение всей жизни. Регулирование объема газов в плавательном пузыре у закрыто пузырных рыб происходит при помощи двух систем:

1) газовая железа (наполняет пузырь газами из крови);

2) овал (поглощает газы из пузыря в кровь).

Газовая железа – система артериальных и венозных сосудов, расположенных в передней части плавательного пузыря. Овал участок во внутренней оболочке плавательного пузыря с тонкими стенками, окруженный мышечным сфинктером, расположен в задней части пузыря. При расслаблении сфинктера газы из плавательного пузыря поступают к среднему слою его стенки, где имеются венозные капилляры и происходит их диффузия в кровь. Количество поглощаемых газов регулируется изменением величины отверстия овала.

При погружении закрытопузырных рыб объем газов в их плавательном пузыре уменьшается, и рыбы приобретают отрицательную плавучесть, но по достижении определенной глубины адаптируются к ней путем выделения газов в плавательный пузырь через газовую железу. При подъеме рыбы, когда давление уменьшается, объем газов в плавательном пузыре увеличивается, избыток их поглощается через овал в кровь, а затем через жабры удаляется в воду. У открытопузырных рыб овала нет, избыток газов выводится наружу через воздушный проток. Большинство открытопузырных рыб не имеют газовой железы (сельдевые, лососевые). Секреция газов из крови в пузырь развита слабо и осуществляется с помощью эпителия, расположенного на внутреннем слое пузыря. Многие открытопузырные рыбы для обеспечения на глубине нейтральной плавучести перед погружением захватывают воздух. Однако при сильных погружениях его бывает недостаточно, и наполнение плавательного пузыря происходит газами, поступающими из крови.

Дата добавления: 2016-05-25; просмотров: 775;

ПОСМОТРЕТЬ ЕЩЕ:

Главная→Полезная информация→ Чудеса китайской медицины

Чудеса китайской медицины

Каждый, ктоценит китайские уникальные продукты, вероятно, слышал хотя бы раз,  что определенный вид пищи или лекарств способствует долголетию или несет чудесные преимущества для здоровья. Некоторые считают, что это  лишь мифы, в то время как другие относятся очень серьезно, почти религиозно. Как же на самом деле обстоит дело с использованием любых из этих продуктов, трав и растений и насколько полезны ли они, рассказывает  Маноп Лертсафирак(Manop Lertsuthiruck), президент Ассоциации традиционной китайской медицины Таиланда.

«Китайская медицина не использует  различные химические искусственно созданные вещества. Средства китайской медицины  не содержат стероиды или любые искусственные добавки» , — говорит Маноп Лертсафирак, президент Ассоциации традиционной китайской медицины Таиланда.«Недостатком средств китайской медицины  является то, что вы должны употреблять их достаточно долго. Вам необходимо подобрать правильную дозировку, чтобы увидеть какие-либо улучшения. И, если вы сможете использовать эти средства в соответствии с природой вашего тела, все хронические болезни можно вылечить», — продолжает он.

В данной статье  президент Ассоциации традиционной китайской медицины Таиланда предлагает свое понимание наиболее известных в своей стране китайских продуктов и лекарств.

Рыбий плавательный пузырь

Вопреки распространенным тайским верованиям о пользе рыбьих потрохов, именно  воздушный пузырь рыбы считается полезным, а не ее кишки. Этот наполненный воздухом пузырь рыбы помогает ей  сохранять плавучесть и контролировать свое положение в воде. Самый ценный пузырь у Китайской Бахабы, которая может достигать двух метров в длину и 100 килограммов веса. Стоимость этой рыбы очень высока именно из-за ценности ее плавательного пузыря, который в традиционной китайской медицине(ТКМ) используют для лечения заболеваний легких и сердечнососудистой системы.

Рыбные пузыри используются в основном в супах или тушеных блюдах, а иногда и в блюдах приготовленных путем жарки в раскаленном масле, при постоянном помешивании. Это довольно простое блюдо, чтобы найти в китайских ресторанах и уличных киосках вокруг Бангкока. Многие, однако, считают, что некоторые дешевые супы из  рыбных пузырей на самом деле сделаны с использованием свиной шкурки в качестве замены. Они по-прежнему сохраняют свое  название, хотя очевидно, что состав совсем иной. Натуральные высококачественные рыбные пузыри могут стоить почти 1 миллион бат за штуку.

«Рыбные пузыри полезны  тем, кто слаб или стар», — продолжает Маноп. Это, как он считает, связано с энергией   воздушного пузыря, которая  позволяет рыбе плавать. Будучи  собранным, по мнению Манопа, он  может поглотить энергию Вселенной и передать ее тому, кто этот пузырь съест.

Однако для того, чтобы  рыбий плавательный пузырь принес ощутимую пользу, он должен быть собран  и храниться более 20 лет. Свежесобранные рыбьи пузыри  не принесут очень мало пользы.

Линчжи

Линчжи  это тип грибов, растущих только в Восточной Азии. Они используются в традиционной китайской медицине более 2000 лет, и могут быть найдены в разных местах. По мнению Маноп,  полезные качества  линчжи отличаются в зависимости от высоты, на которой они были найдены.

Если линчжи  выросли на большой высоте — свыше над уровнем моря – их вкус является сравнительно легким и  не горький. Такие грибы линчжи применяются  для детоксикации печени. Линчжи, который выросли на меньшей высоте, подходят для тех, кто хочет нормализовать кровяное давление и уровень сахара в крови. Они также помогают в уменьшении уровня жировых  и печеночных ферментов. Маноп также добавил, что линчжи  называют«эликсиром долголетия».

Ягоды годжи

Также известны как просто годжи. Это высушенные  ягоды, они выглядят как красный изюм. Они имеют кисло-сладкий вкус и являются довольно распространенным ингредиентом китайской кухни. В большинстве случаев, ягоды годжи  добавляют в рагу, супы – которые, как утверждают, имеют тонизирующий эффект  вместе  с другими китайскими травами.

«Годжи-эликсир жизни», — считает  Маноп.«Когда вы употребляете их постоянно и они накапливаются  в вашем организме, годжи сохранят ваши глаза  зоркими и широко открытыми, и будут устранять  жировые клетки в печени.»

По мнению Манопа, регулярное употребление  напитка из  40 грамм размолотых годжи, соединенных с водой, помогает снизить вес. Ягоды годжи  также хороши для улучшения зрения и состояния почек. Причем считается, что кислые годжи имеют более полезные свойства. Кислые годжи  лучше использовать для  детоксикации вашего тела, а также  тем, у кого много жировых клеток  в печени, или тем, кто хочет стать стройнее.

«Нам очень повезло, что цена на ягоды  годжи еще  не поднялась и они  широко выращиваются», — добавил он.

Птичьи гнезда

Это съедобный вид гнезд, конечно, если Вы против, чтобы положить частички этого гнезда в свой сладкий суп. Этот желатиновый деликатес изготовлен из съедобных гнезд стрижей-саланганов, обитающих в Юго-Восточной Азии.

Зачем рыбам плавательный пузырь

Они строят свои гнезда из  застывшей слюны,  тонких и длинных мальков  различных видов морских рыб, съедобных водорослей с прилипшими рыбьими икринками. В местах обитания этих птиц  другого строительного материала просто нет. Облепленные  птичьей слюной, гнезда высушиваются и становятся очень твердыми.

«Птичье гнездо“, согласно традиционной китайской медицине, не считается  лечебным продуктом», — сказал Маноп.«Это скорее дополнительное питание.“

Птичье гнездо содержит энергию Инь  или холод и может помочь тем, у кого язвы в горле, гортани и легких. Еще одно полезное свойство», — продолжил он,  — то, что употребление птичьих гнезд может улучшить состояние кожи, особенно в случае с акне.

Птичье гнездо не имеет  своего собственного вкуса, но содержит много полноценных белков. Его часто добавляют в сладкий суп, который можно встретить  в Китайском квартале Бангкока. Самая низкая цена на миску сладкого супа из птичьего гнезда находится в пределах  50-200 бат. Лучшими по  качеству  считаются гнезда с сохраненной формой, они стоят намного больше, чем суп  из прядей гнезд, которые продаются в уличных киосках. Гнезда высокого качества могут стоить до 100 000 бат за килограмм. Они  по праву заслуживают свою высокую цену, поскольку считаются  икрой Востока. По вкусовым ощущениям гнезда саланганов сравнивают с осетровой икрой.

Благодаря высокой стоимости и популярности потребления птичьих гнезд, их добыча  превратилась в крупный бизнес. Некоторые компании строят большие сооружения и создают там интерьер,  напоминающий темные пещеры, так что птицы могут прилететь и построить свои гнезда. Другие торговцы  идут в пещеры,  которые являются естественной среде обитания  саланганов и забирают гнезда, пока  птицы отсутствуют.

Саланганам приходится восстанавливать свои гнезда после того, как они были разрушены руками человека. Этот факт  заставляет многих задуматься  о том, что такой промысел  представляет собой косвенный акт пыток над животными.

14.07.2014, 5149 просмотров.

ПЛАВАТЕЛЬНЫЙ ПУЗЫРЬ И ГИДРОДИНАМИЧЕСКИЕ ОСОБЕННОСТИ РЫБ

Плавучесть рыб (отношение плотности тела рыбы к плотности воды) может быть нейтральной (0), положительной или отрицательной. У большинства видов плавучесть колеблется от +0,03 до –0,03. При положительной плавучести рыбы всплывают, при нейтральной парят в толще воды, при отрицательной погружаются.

Рис. 10. Плавательный пузырь карповых.

Нейтральная плавучесть (или гидростатическое равновесие) у рыб достигается:

1) при помощи плавательного пузыря;

2) обводнением мышц и облегчением скелета (у глубоководных рыб)

3) накоплением жира (акулы, тунцы, скумбрии, камбалы, бычки, вьюны и т.д.).

Большинство рыб имеют плавательный пузырь. Его возникновение связывают с появлением костного скелета, который увеличивает удельный вес костных рыб. У хрящевых рыб плавательный пузырь отсутствует, из костистых его нет у донных (бычки, камбалы, пинагор), глубоководных и некоторых быстроплавающих видов (тунец, пеламида, скумбрия). Дополнительным гидростатическим приспособлением у этих рыб является подъемная сила, которая образуется за счет мускульных усилий.

Плавательный пузырь образуется в результате выпячивания дорзальной стенки пищевода, его основная функция – гидростатическая. Плавательный пузырь воспринимает также изменения давления, имеет непосредственное отношение к органу слуха, являясь резонатором и рефлектором звуковых колебаний. У вьюновых плавательный пузырь покрыт костной капсулой, утратил гидростатическую функцию, и приобрел способность воспринимать изменения атмосферного давления. У двоякодышащих и костных ганоидов плавательный пузырь выполняет функцию дыхания. Некоторые рыбы способны при помощи плавательного пузыря издавать звуки (треска, мерлуза).

Плавательный пузырь представляет собой относительно большой эластичный мешок, который расположен под почками. Он бывает:

1) непарный (большинство рыб);

2) парный (двоякодышащие и многоперы).

У многих рыб плавательный пузырь однокамерный (лососевые), у некоторых видов двухкамерный (карповые) или трехкамерный (ошибень), камеры между собой сообщаются. У ряда рыб отплавательного пузыря отходят слепые отростки, соединяющие его с внутренним ухом (сельдевые, тресковые и др.).

Плавательный пузырь заполнен смесью кислорода, азота и углекислого газа. Соотношение газов в плавательном пузыре у рыб различается и зависит от вида рыб, глубины обитания, физиологического состояния и др. У глубоководных рыб в плавательном пузыре содержится значительно больше кислорода, чем у видов, обитающих ближе к поверхности. Рыбы с плавательным пузырем делятся на открытопузырных и закрытопузырных. У открытопузырных рыб плавательный пузырь соединяется с пищеводом с помощью воздушного протока. К ним относятся – двоякодышащие, многоперы, хрящевые и костные ганоиды, из костистых – сельдеобразные, карпообразные, щукообразные. У атлантической сельди, шпрота и хамсы помимо обычного воздушного протока имеется второй проток позади анального отверстия, который соединяет заднюю часть плавательного пузыря с внешней средой. У закрытопузырных рыб воздушный проток отсутствует (окунеобразные, трескообразные, кефалеобразные и др.).

Как работает плавательный пузырь у рыб?

Первоначальное заполнение плавательного пузыря газами у рыб происходит при заглатывании личинкой атмосферного воздуха. Так, у личинок карпа это имеет место через 1–1,5 суток после вылупления. Если этого не происходит, развитие личинки нарушается и она гибнет. У закрытопузырных рыб плавательный пузырь со временем утрачивает связь с наружной средой, у открытопузырных воздушный проток сохраняется в течение всей жизни. Регулирование объема газов в плавательном пузыре у закрыто пузырных рыб происходит при помощи двух систем:

1) газовая железа (наполняет пузырь газами из крови);

2) овал (поглощает газы из пузыря в кровь).

Газовая железа – система артериальных и венозных сосудов, расположенных в передней части плавательного пузыря. Овал участок во внутренней оболочке плавательного пузыря с тонкими стенками, окруженный мышечным сфинктером, расположен в задней части пузыря. При расслаблении сфинктера газы из плавательного пузыря поступают к среднему слою его стенки, где имеются венозные капилляры и происходит их диффузия в кровь. Количество поглощаемых газов регулируется изменением величины отверстия овала.

При погружении закрытопузырных рыб объем газов в их плавательном пузыре уменьшается, и рыбы приобретают отрицательную плавучесть, но по достижении определенной глубины адаптируются к ней путем выделения газов в плавательный пузырь через газовую железу. При подъеме рыбы, когда давление уменьшается, объем газов в плавательном пузыре увеличивается, избыток их поглощается через овал в кровь, а затем через жабры удаляется в воду. У открытопузырных рыб овала нет, избыток газов выводится наружу через воздушный проток. Большинство открытопузырных рыб не имеют газовой железы (сельдевые, лососевые). Секреция газов из крови в пузырь развита слабо и осуществляется с помощью эпителия, расположенного на внутреннем слое пузыря. Многие открытопузырные рыбы для обеспечения на глубине нейтральной плавучести перед погружением захватывают воздух. Однако при сильных погружениях его бывает недостаточно, и наполнение плавательного пузыря происходит газами, поступающими из крови.

Дата добавления: 2016-05-25; просмотров: 782;

ПОСМОТРЕТЬ ЕЩЕ:

Оставьте комментарий