Особенности строения и процессов жизнедеятельности инфузории туфельки


<<Рефераты | << Зоология | 

Содержание

Инфузория — туфелька, особенности строения и процессов жизнедеятельности, размножения, раздражимость

Класс инфузории

— наиболее высокоорганизованные простейшие. Органоидами движения служат реснички, по строению сходные со жгутиками, но более короткие и многочисленные. Тело покрыто прочной эластичной оболочкой, придающей ей постоянную форму. У большинства инфузорий 2 ядра: большое и малое. Большое ядро имеет полиплоидный набор хромосом и регулирует процессы движения, питания, выделения, а также бесполое размножение, осуществляемое поперечное деление клетки пополам. Малое ядро имеет диплоидный набор хромосом и играет важную роль в половом процессе, выступая в качестве носителя наследственной информации. Впервые инфузорий обнаружили в воде, настоянной на различных травах («инфузум» означает «настойка»).

Инфузория

— туфелька наиболее распространенный представитель, обитатель пресных водоемов, длина тела 0,3 мм. Форма тела постоянная и напоминает подошву туфли. Все тело равномерно покрыто ресничками, расположенными рядами, их больше 10 тысяч. Работают они синхронно, совершая волнообразные движения, обеспечивается это плотными цитоплазматическими нитями — фибриллами (плавает тупым концом вперед). Между ресничками расположены мелкие веретеновидные тельца — трихоцисты — органоиды защиты и нападения, которые в ответ на раздражение с силой выбрасываются и вонзаются в тело жертвы или врага. Питаются инфузории бактериями и одноклеточными водорослями. Сбоку на теле имеется углубление — предротовое углубление, ведущее в рот. На дне глотки в цитоплазме образуется пищеварительная вакуоль, которая отделяется от глотки и увлекается током цитоплазмы. При обилии пищи и нормальных температурных условиях (15 градусов) пищеварительные вакуоли образуются, каждые 1-2 мин. В них пища переваривается и усваивается цитоплазмой, после чего пищеварительная вакуоль, пройдя по часовой стрелке, подходит к заднему концу тела, где через специальное отверстие в оболочке — порошицу выбрасывает не переваренные остатки пищи наружу. Функцию осморегуляции выполняют 2 сократительные вакуоли.

Размножается туфелька

бесполым и половым способом. При бесполом размножении тело туфельки вытягивается в длину, по экватору появляется перетяжка, которая делит клетку пополам. Повторяется 1-2 раза в сутки, а через несколько поколений бесполого размножения сменяется половым, протекающим по типу конъюгации. В половом размножении большую роль играет малое ядро. В теле каждого участника большое ядро разрушается, а малое ядро делится на 4 части (процесс мейоза, при котором число хромосом уменьшается вдвое). Вскоре 3 новых ядра разрушаются, а четвертая вновь делится и образует в каждой инфузории одно женское и одно мужское ядро. Мужское ядро переходит в клетку своего партнера, где сливается с женским ядром. Таким образом, при половом процессе происходит обмен ядерным материалом между отдельными особями, которые получают новые признаки и свойства. Вскоре в каждой из них ядро делится на большое и малое. При половом размножении число особей не увеличивается, а обновляются наследственные свойства организма, и возрастает его способность приспосабливаться к условиям среды.

Характерной особенностью туфельки является раздражимость.

Это способность организма отвечать определенным образом на воздействия окружающей среды. Это свойство характерно для всех живых существ. Раздражитель — фактор среды; раздражение — воздействие раздражителя; раздражимость — ответ организма на раздражение. Простейшие не имеют нервной системы, они воспринимают раздражения всей клеткой и способны отвечать на них движением, называемые таксисом, перемещаясь в направлении раздражителя или от него. (Примеры с кристалликом соли и бактериями в капле воды: поместим рядом на стекле каплю чистой воды и каплю воды с инфузориями. Соединим обе капли тонким водяным каналом. В каплю с инфузориями положим маленький кристаллик соли. По мере растворения соли туфельки будут переплывать в каплю с чистой водой: для инфузорий раствор соли вреден. Изменим условия опыта. В каплю с инфузориями не будем прибавлять ничего. Зато в другую каплю добавим немного настоя с бактериями. Тогда туфельки соберутся около бактерий — своей обычной пищи. Эти опыты показывают, что инфузории могут отвечать определенным образом на воздействия окружающей среды, т.е. обладает раздражимостью). Среди паразитических форм у человека встречается инфузория — балантидий. При попадании в слизистую оболочку она вызывает ее изъявления и кровавый понос. Эта инфузория живет в кишечной свиней, которые служат источником заражения людей, ухаживающих за животными.

Выводы:

1. Это наиболее жизнеспособный одноклеточный организм.
2. Биологическое значение полового размножения заключается в объединении в одном организме наследственных свойств 2-х особей. Это повышает жизнеспособность организма, что выражается в лучшей приспособленности к окружающим условиям. <<Рефераты | << Зоология | 

ЕГЭ 100 баллов. Биология. Самостоятельная подготовка к ЕГЭ

Тип Инфузории. Инфузория-туфелька, особенности строения и процессов жизнедеятельности, раздражимость, размножение

Инфузория-туфелькаобитает в стоячих пресных водоемах.

особенности строения и процессов жизнедеятельности инфузории туфельки и пресноводной гидры

Форма тела животного постоянна, так как имеется плотная эластичная пелликула. Тело туфельки покрыто продольными рядами ресничек.

На середине брюшной стороны тела простейшего расположен клеточный рот, окруженный более длинными ресничками, загоняющими в рот пищу — бактерии. Рот ведет в глотку, на дне которой формируются пищеварительные вакуоли. Непереваренные остатки пищи выводятся из вакуолей через специальное отверстие в пелликуле — порошицу.

Дыхание и выделение происходит через всю поверхность тела. Функцию осморегуляции выполняют две сократительные вакуоли, которые находятся на переднем и заднем концах тела. Вода из тела животного собирается в приводящие канальцы, из которых изливается в центральный резервуар, открывающийся во внешнюю среду. По внешнему виду вакуоль напоминает звездочку. Сократительные вакуоли пульсируют попеременно.

Инфузория-туфелька обладает хемотаксисом: она способна активно двигаться в направлении пищи и, наоборот, уплывает от вредных химических воздействий.

Ядерный аппарат у инфузории-туфельки состоит из двух ядер: большого, полиплоидного (вегетативного), которое контролирует синтез белков в клетке; и малого, диплоидного (генеративного), принимающего участие в половом процессе.

При благоприятных условиях туфелька размножается бесполым путем: клетка делится на две поперечной перетяжкой. При этом вегетативное ядро делится перетяжкой на два, а генеративное — митозом. При бесполом размножении многие клеточные органеллы достраиваются заново, например ротовой аппарат.

Половой процесс у инфузорий называется конъюгацией. Две особи подходят друг к другу и соединяются в области клеточных ртов: между ними формируется цитоплазматический мостик. Ядерный аппарат преобразуется таким образом, что в каждой особи оказывается по два гаплоидных ядра. Одним из этих ядер животные обмениваются. Затем инфузории расходятся, а гаплоидные ядра сливаются. Из образовавшегося диплоидного ядра вновь возникают большое и малое ядра.



У инфузории-туфельки есть бесполое и половое размножение (половой процесс). Органоиды питания. Органоиды осморегуляции. Трихоцисты — разновидность разнообразных по строению органоидов экструсом, наличие которых характерно для инфузорий и некоторых других групп протистов.

Вода с бактериями и одноклеточными водорослями, которыми питается инфузория, через рот и глотку загоняется особой группой ресничек перистома в эндоплазму, где окружается пищеварительной вакуолью.

Инфузория-туфелька

В свою очередь, инфузории служат пищей для мальков рыб и многих беспозвоночных животных. Обитающие в почве инфузории и другие простейшие способствуют повышению плодородия орошаемых земель в южных районах. Средой обитания инфузории туфельки является любой пресный водоем со стоячей водой и наличием в воде разлагающихся органических веществ.

Строение и размножение инфузории туфельки

Это наиболее высокоорганизованные простейшие, обитающие в пресных и морских водоемах, во влажной почве. Некоторые виды являются паразитами человека и животных. У инфузорий разных видов разнообразная форма тела, но чаще удлиненная, обтекаемая. Для инфузорий характерно наличие не менее двух разных по размеру ядер — большого (макронуклеус) и малого (микронуклеус), выполняющих различные функции.

Инфузория туфелька: строение и жизнедеятельность

Строение про– и эукариотной клеток. Взаимосвязь строения и функций частей и органоидов клетки – основа ее целостности

В основе каждой реснички лежит базальное тельце, расположенное в прозрачной эктоплазме. Последняя постепенно передвигается вдоль тела инфузории. Пульсирующие вакуоли выполняют двоякую функцию — отдачу излишней воды, что необходимо для поддержания постоянного осмотического давления в теле парамеции, и выделение продуктов диссимиляции.

Смотреть что такое «КЛАСС ИНФУЗОРИИ (INFUSORIA или CILIATA)» в других словарях:

При бесполом размножении клетка перешнуровывается пополам по экватору и размножение осуществляется путем поперечного деления. Большие ядра при этом распадаются на части и постепенно растворяются в цитоплазме. Малые ядра сначала делятся дважды, происходит редукция числа хромосом, далее три из четырех ядер разрушаются и растворяются в цитоплазме, а четвертое снова делится.

Паразитические инфузории

Многие инфузории паразитируют на рыбах, иногда вызываемые ими заболевания приводят к массовой гибели молоди карпа в прудовых хозяйствах. Среди паразитических инфузорий определенный интерес представляет балантидиум, обитающий в кишечнике человека, свиньи. На переднем суженном конце тела находится перистом, который переходит в цитостом и воронкообразную глотку, расположенную в виде щели перпендикулярно к поверхности.

В нижних отделах кишечника вегетативные формы инцистируются и выносятся наружу. Свободноживущих и паразитических простейших изучал В. А. Догель и его ученики, внесшие большой вклад в исследование строения, размножения, жизненных циклов и филогении одноклеточных животных. Основным процессом прогрессивной морфофизиологии простейших является полимеризация, на ее основе и наряду с ней происходит олигомеризация, т. е. уменьшение числа гомологичных органоидов.

Значение инфузорий

Инфузория-туфелька (лат.Paramecium caudatum) — вид инфузорий, одноклеточных организмов из группы альвеолят. Её можно обнаружить и в аквариуме, взяв пробы воды с илом и рассмотрев их под микроскопом. С базальными тельцами у инфузорий связана инфрацилиатура — сложная система цитоскелета. У туфельки она включает отходящие назад посткинетодесмальные фибриллы и радиально расходящиеся поперечно исчерченные филаменты.

Они расположены в мембранных мешочках и состоят из тела и наконечника. Известны мутанты туфелек, лишенные трихоцист и вполне жизнеспособные. У туфельки 2 сократительные вакуоли в передней и задней части клетки.

Простейшие обитающие в морской воде и почве и другие

Туфелька с удаленным или разрушенным микронуклеусом может жить и размножаться бесполым путем, однако теряет способность к половому размножению. Совершая ресничками волнообразные движения, туфелька передвигается (плывёт тупым концом вперёд). Ресничка движется в одной плоскости и совершает прямой (эффективный) удар в выпрямленном состоянии, а возвратный — в изогнутом.

При столкновении с препятствием мембрана клетки деполяризуется, и в клетку входят ионы кальция. Они загоняют в глотку вместе с потоком воды основную пищу инфузорий — бактерии. Инфузория находит свою добычу, чувствуя наличие химических веществ, которые выделяют скопления бактерий. На дне глотки пища попадает в фагосому, перемещаются в теле инфузории током цитоплазмы по определенному «маршруту» — сначала к заднему концу клетки, затем к переднему и затем снова к заднему.

Обычно инфузориями-туфельками называют и другие виды рода Paramecium. Инфузория туфелька обитает в мелких стоячих водоемах. Затем в каждой инфузории «свой» женский и «чужой» мужской пронуклеусы сливаются, образуя диплоидное ядро — синкарион. В эндоплазме располагаются — два ядра (большое и малое) и системы пищеварительных, а также выделительных органоидов. Туфелька и некоторые другие свободноживущие инфузории питаются бактериями и водорослями.

Популярное сегодня:

Инфузории — это группа простейших организмов, имеющих более сложное строение. К ним относятся различные виды инфузорий, бурсарий, сувоек и др. Типичным представителем является вид инфузория-туфелька. Большинство инфузорий живет в пресной воде в ее толще или на дне и питается органическими остатками, бактериями и одноклеточными водорослями. Ряд инфузорий могут образовывать колонии.

Инфузории сохраняют постоянную форму тела благодаря наличию клеточной оболочки. Однако форма и размеры тела у разных видов различны. Размеры от 10 мкм до 5 мм.

У инфузорий тело покрыто ресничками. У инфузории-туфельки реснички равномерно распределены по всему телу. С их помощью туфелька плавает, ввинчиваясь в воду. У стелонихий реснички собраны в пучки, это дает возможность передвигаться, как бы ползая. Сувойки ведут сидячий образ жизни, прикрепляясь спиральным стебельком к растениям и различным предметам под водой. Стебелек может сокращаться.

У инфузорий имеется большое и малое ядра (малое может быть не одно). У инфузории есть клеточные рот, глотка и порошица (место удаления остатков). У сократительных вакуолей есть приводящие канальцы.

Инфузория-туфелька питается бактериями. С помощью согласованного колебания ресничек, окружающих клеточный рот, бактерии попадают туда. Далее через клеточную глотку бактерии попадают в цитоплазму, где происходит образование пищеварительной вакуоли.

Инфузория туфелька: строение и жизнедеятельность

После переваривания остатки удаляются через порошицу.

Инфузории могут реагировать на различные вещества в воде, свет, температуру и др. Инфузории-туфельки подплывают к скоплениям бактерий, уплывают из соленой воды, плывут в более освещенные места.

Инфузории размножаются делением надвое. Сначала делится их ядра, после это родительская клетка перетягивается в поперечном направлении, и образуются две дочерние клетки.
У сувоек, которые ведут сидячий образ жизни, клетки тоже делятся надвое. При этом дочерние клетки отделяются от стебелька и свободно плавают, их называют «бродяжками». Таким образом сувойки расселяются. «Бродяжка» в новом месте прикрепляется к предметам.

При наступлении неблагоприятных условий (например, при температуре ниже 0 °C) инфузории могут образовывать цисты, которые имеют округлую форму. Цисты могут распространяться с помощью ветра и живых организмов.

Описание инфузории

К типу Инфузории относят около 6000 видов простейших, органеллами движения которых служит большое количество ресничек. Для большинства инфузорий характерно присутствие двух ядер: крупного вегетативного — макронуклеуса — и более мелкого генеративного — микронуклеуса. Макронуклеус имеет полиплоидный набор хромосом и регулирует процессы обмена веществ. Микронуклеус содержит диплоидный набор хромосом и участвует в половом процессе.

Среди инфузорий есть свободноживущие обитатели пресных и морских водоемов и паразиты человека и животных.


Ciliated infusoria

К свободноживущим инфузориям относят инфузорию туфельку. Размеры клетки 0,1-0,3 мм. Простейшее имеет постоянную форму, так как эктоплазма уплотнена и образует пелликулу. Тело инфузории покрыто ресничками. Их насчитывают от 10 до 15 тыс. В эктоплазме инфузории имеют защитные образоания — трихоцисты. При раздражении трихоцисты выстреливают наружу, превращаясь в длинные нити, парализующие жертву. После использования одних трихоцист на их месте в эктоплазме развиваются новые.

К органеллам питания относят ротовое отверстие, расположенное на брюшной стороне и ведущее в клеточный рот, который переходит в клеточную глотку. Вода с бактериями через елнточный рот попадает в эндоплазму, где образуются пищеварительные вакуоли. Вакуоли передвигаются вдоль тела инфузории.

Оставшиеся внутри вакуоли непереваренные остатки пищи удаляются наружу через порошицу — отверстие, расположенное неподалеку от заднего конца тела инфузории.

У инфузории туфельки есть две сократительные вакуоли, расположенные в передней и задней частях тела. Каждая вакуоль состоит из округлого резервуара и подходящих к нему в виде звезды 5 — 7 канальцев. Жидкие продукты и вода из цитоплазмы сначала поступают в приводящие канальцы, затем канальцы все сразу сокращаются и изливают свое содержимое в резервуар, после чего последний сокращается и выбрасывает жидкость через отверстие наружу, а канальцы в это время вновь наполняются. Вакуоли сокращаются поочередно.


Инфузория под микроскопом

Бесполое размножение инфузорий осуществляется путем поперечного деления и сопровождается делением макро- и микронуклеусов. Размножение повторяется 1 — 2 раза в сутки. Через несколько поколений в жизненном цикле инфузорий происходит половой процесс, который называют конъюгацией. Две инфузории подходят друг к другу брюшными сторонами, оболочка в месте их соприкосновения растворяется, и между ними образуется цитоплазматический мостик. Макронуклеусы при этом разрушаются, а микронуклеусы делятся мейозом на четыре ядра, три из которых разрушаются, а четвертое вновь делится пополам митозом.

В результате в каждой инфузории образуются мужское (мигрирующее) и женское (стационарное) ядра. Затем между особями происходит обмен мигрирующими ядрами с последующим слиянием стационарного и мигрирующего ядер, после чего особи расходятся. Вскоре в каждой из них ядро делится и впоследствии образуются микро- и макронуклеусы. Таким образом, при половом процессе число инфузорий не увеличивается, а обновляются наследственные свойства макронуклеуса и возникают новые комбинации генетической информации.

У человека в просвете толстого кишечника может паразитировать инфузория балантидий — возбудитель балантидиаза. Клинически это тяжелое заболевание выражается в кровавом поносе, коликах, лихорадке и мышечной слабости. Основным источником распространения балантидиоза служат свиньи, зараженные балантидиями. Балантидий в кишечнике свиней образуют цисты, которые с фекалиями попадают во внешнюю среду и там сохраняются длительное время. Заражение человека происходит при занесении цист в пищеварительный тракт с грязными руками или пищей. Часто балантидиозом болеют люди, связанные с работой по уходу за свиньями или обработкой свинины.

Диагноз ставят при нахождении балантидия в фекалиях. Профилактика та же, что и при других кишечных заболеваниях.

Строение

Наиболее типичный широко распространенный представитель ресничных — инфузория туфелька (Paramecium). Она обитает в стоячей воде, а также в пресноводных водоемах с очень слабым течением, содержащих разлагающийся органический материал.


Строение инфузории-туфельки

Сложность строения клетки у парамеции объясняется тем обстоятельством, что ей приходится выполнять все функции, присущие целому организму, а именно питание, осморегуляцию и передвижение. Тело парамеции имеет характерную форму: передний конец у нее тупой, а задний несколько заострен.

Реснички инфузории туфельки расположены парами по всей поверхности клетки. Располагаясь продольными диагональными рядами, они, совершая биения, заставляют инфузорию вращаться и продвигаться вперед. Между ресничками находятся отверстия, ведущие в особые камеры, называемые трихоцистами. Из этих камер под влиянием определенных раздражителей могут выстреливать тонкие остроконечные нити, используемые, вероятно, для удержания добычи.

Под пелликулой инфузории туфельки располагается эктоплазма — прозрачный слой плотной цитоплазмы консистенции геля. В эктоплазме находятся базальные тельца (идентичные центриолям), от которых отходят реснички, а между базальными тельцами имеется сеть тонких фибрилл, участвующих, по-видимому, в координировании биения ресничек.

Основная масса цитоплазмы инфузории туфельки представлена эндоплазмой, имеющей более жидкую консистенцию, чем эктоплазма. Именно в эндоплазме расположено большинство органелл. На вентральной (нижней) поверхности туфельки ближе к ее переднему концу находится околоротовая воронка, на дне которой находится рот, или цитостом.

Рот инфузории туфельки ведет в короткий канал — цитофаринкс, или глотку. Как околоротовая воронка, так и глотка могут быть выстланы ресничками, движения которых направляют к цитостому поток воды, несущей с собой различные пищевые частицы, такие, например, как бактерии. Вокруг попавших в цитоплазму путем эндоцитоза пищевых частиц образуется пищевая вакуоль. Эти вакуоли перемещаются по эндоплазме к так называемой порошице, через которую непереваренные остатки путем экзоцитоза выводятся наружу.

В цитоплазме инфузории туфельки имеются также две сократительные вакуоли, местоположение которых в клетке строго фиксировано. Эти вакуоли отвечают за осморегуляцию, т. е. поддерживают в клетке определенный водный потенциал. Жизнь в пресной воде осложняется тем, что в клетку постоянно поступает вода в результате осмоса; эта вода должна непрерывно выводиться из клетки, чтобы предотвратить ее разрыв.

Происходит это с помощью процесса активного транспорта, требующего затраты энергии. Вокруг каждой сократительной вакуоли инфузории туфельки расположен ряд расходящихся лучами каналов, собирающих воду, перед тем как высвободить ее в центральную вакуоль.

В клетке парамеции инфузории туфельки находятся два ядра. Большее из них — макронуклеус — полиплоидное; оно имеет более двух наборов хромосом и контролирует метаболические процессы, не связанные с размножением. Микронуклеус — диплоидное ядро. Оно контролирует размножение и образование макронуклеусов при делении ядра.

Парамеция инфузории туфельки может размножаться и бесполым путем (поперечным делением надвое) и половым (путем конъюгации).

Движение

Совершая ресничками волнообразные движения, туфелька передвигается (плывёт тупым концом вперёд). Ресничка движется в одной плоскости и совершает прямой (эффективный) удар в выпрямленном состоянии, а возвратный — в изогнутом. Каждая следующая ресничка в ряду совершает удар с небольшой задержкой по сравнению с предыдущей. Плывя в толще воды, туфелька вращается вокруг продольной оси. Скорость движения — около 2 мм/c. Направление движения может меняться за счёт изгибаний тела. При столкновении с препятствием направление прямого удара меняется на противоположное, и туфелька отскакивает назад. Затем она некоторое время "раскачивается" взад-вперед, а затем снова начинает движение вперёд. При столкновении с препятствием мембрана клетки деполяризуется, и в клетку входят ионы кальция. В фазе "раскачивания" кальций выкачивается из клетки

Дыхание, выделение, осморегуляция

Туфелька дышит всей поверхностью клетки. Она способна существовать за счёт гликолиза при низкой концентрации кислорода в воде. Продукты азотистого обмена также выводятся через поверхность клетки и частично через сократительную вакуоль. Основная функция сократительных вакуолей осморегуляторная. Они выводят из клетки излишки воды, проникающие туда за счёт осмоса. Сначала набухают приводящие каналы, затем вода из них перекачивается в резервуар. При сокращении резервуара он отделяется от приоводящих каналов, а воды выбрасывается через пору. Две вакуоли работают в противофазе, каждая при нормальных физиологических условиях сокращается один раз в 10—15 с. За час вакуоли выбрасывают из клетки объём воды, примерно равный объёму клетки.

Размножение

У туфельки есть бесполое и половое размножение (половой процесс). Бесполое размножение — поперечное деление в активном состоянии. Оно сопровождается сложными процессами регенерации. Например, одна из особей заново образует клеточный рот с околоротовой цилиатурой, каждая достраивает недостающую сократительную вакуоль, происходит размножение базальных телец и образование новых ресничек и т.п.

Половой процесс, как и у других инфузорий, происходит в форме конъюгации. Туфельки, относящиеся к разным клонам, временно "склеиваются" ротовыми сторонами, и между клетками образуется цитоплазматический мостик. Затем макронуклеусы конъюгирующих инфузорий разрушаются, а микронуклеусы делятся путем мейоза.

Особенности строения и жизнедеятельности инфузорий

Из образовавшихся четырех гаплоидных ядер три погибают, а оставшаяся делится митозом. В каждой инфузории теперь есть два гаплоидных пронуклеуса — один из них женский (стационарный), а другой — мужской (мигрирующий). Инфузории обмениваются мужскими пронуклеусами, а женские остаются в "своей" клетке. Затем в каждой инфузории "свой" женский и "чужой" мужской пронуклеусы сливаются, образуя диплоидное ядро — синкарион. При делении синкариона образуется два ядра. Одно из них становится диплоидным микронуклеусом, а второе превращается в полиплоидный макронуклеус. Реально этот процесс происходит сложнее и сопровождается специальными постконъюгационными делениями.

Сувойка

Род простейших из подкласса кругоресничных инфузорий (Peritricha). Включает свыше 100 широко распространённых видов, живущих в морской и пресной воде. С. — сидячие животные, прикрепляются к субстрату (в отличие от других родов Peritricha) при помощи неветвящегося сократительного стебелька. Тело С., имеющее форму колокольчика, лишено ресничек. На расширенном переднем его конце (адоральная зона) расположен двойной ряд ресниц (обычно сливающихся в меморанеллы), закрученный влево (в отличие от спиральноресничных инфузорий, у которых адоральная зона мембранелл закручена вправо). Околоротовая спираль ведет к ротовому отверстию. Питаются С. мелкими взвешенными в воде органическими частицами (например, бактериями, детритом). При бесполом размножении в результате деления образуются снабженные венчиком ресниц свободноплавающие "бродяжки", которые затем образуют стебелёк и прикрепляются к субстрату. Половой процесс — по типу анизогамной конъюгации (крупные неподвижные макроконъюганты и мелкие подвижные микроконъюганты).

Инфузория трубач

Род простейших класса инфузорий подотряда разноресничных. Длина до 1 мм. Свыше 10 видов. Тело в форме воронки. На расширенном переднем конце мощно развитая зона околоротовых мембранелл, направляющих ток пищевых частиц к ротовому отверстию. Остальное тело покрыто продольными рядами мелких ресничек. Способны резко сокращаться, принимая шарообразную форму благодаря сократительным нитям — мионемам. Могут свободно плавать или прикрепляться к субстрату суженным задним концом. Обитают в морях и пресных водах. У некоторых видов в цитоплазме имеются многочисленные симбионты — одноклеточные водоросли.

Инфузория-стилохония

Есть такая инфузория — стилонихия. Под влиянием летучих фитонцидов лука она распадается на мельчайшие зернышки и даже растворяется. Такое явление микробиологи называют лизисом. Тело инфузории «исчезает». То же происходит с инфузорией, называемой «локсодес рострум». В течение 10—15 секунд все ее тело растворяется в окружающей жидкой среде!

В совершенно тех же условиях другая инфузория — спиростомум терес — под влиянием тех же фитонцидов распадается на зернышки, но растворения всего тела не происходит. Эту смерть  мы  называем з ернистым распадом.

Некоторые простейшие под влиянием фитонцидов умирают, сохраняя свое строение, все свои основные структуры — ядро, реснички, благодаря которым происходит движение, и т. д. Более того, эти структуры становятся отчетливее — при умирании как бы закрепляется их строение. Микроорганизм умер, но он кажется нормальным. В таком состоянии микроб может находиться час, другой, третий и даже более суток. Затем уже начинает совершаться саморазложение очень сложное химическое явление распада белков и других соединений. Примером такого явления может служить фиксация структур и последующий распад у инфузории, называемой опа-линой, паразитирующей в кишечнике лягушки.



Мейотическое деление осуществляется в клетках с диплоидным набором хромосом, возникшим в результате оплодотворения, откуда следует, что каждая хромосома в них имеет своего гомолога. При зтом совмещаются процессы, обеспечивающие, с одной стороны, превращение диплоидного ядра (2п) в гаплоидное (п), с другой — рекомбинации генетического материала, обмен участками между гомологичными хромосомами (кроссинговер).[ …]

Слияние ядер после перехода их в другую клетку называется парасексуальным процессом. Возникшие при этом диплоидные ядра способны размножаться, причем возможна митотическая рекомбинация и за счет этого перестройка генетического материала.[ …]

Эндомитоз впервые был описан К. И. Мейером (1925) в клетках тапетума шпината (Spinacia sativa), где им были обнаружены диплоидные ядра на ранних фазах и полиплоидные на более поздних фазах деления. Формы эндомитоза весьма разнообразны и недостаточно изучены.[ …]

У бактерий, таких, как E. coli, хромосома содержит 10° пар нуклеотидов, что соответствует примерно 1000 генам, тогда как ядра растений и животных содержат гораздо большие количества ДНК. Следовательно, ДИК, содержащейся в ядре Vicia faba, достаточно для кодирования около 25-106 генов.[ …]

У аскомицетных дрожжей в результате копуляции после плазмо- и кариогамии зигота непосредственно развивается в сумку, где диплоидное ядро после первого деления в мейозе претерпевает редукцию. Однако у некоторых дрожжей наблюдается своеобразное извращение в чередовании поколений: прорастающие споры или первые получившиеся из них гаплоидные клетки сливаются попарно и размножаются дальше почкованием уже в диплоидном состоянии. У таких дрожжей сумка со спорами образуется без непосредственно предшествующей копуляции.[ …]

Двойное оплодотворение — тип оплодотворения, свойственный покрытосеменным растениям, при котором один из спермиев сливается с яйцеклеткой с образованием диплоидной зиготы, дающей начало зародышу семени, а второй спермпй сливается с диплоидным ядром зародышевого мешка с образованием клетки, дающей начало эндосперму семенп.[ …]

В цикле развития высших аскомицетов чередуются, таким образом, три стадии: длительная — гаплоидная, в течение которой происходит бесполое размножение, непродолжительная — дикарионтическая (а с-когенные гифы) и очень короткая — диплоидная (молодая сумка с диплоидным ядром).[ …]

Для высших аскомицетов (подклассы Еиавсо-тусеШае и Ьоси1оа8сотусеШае) характерны дифференциация и усложнение строения гаметангиев. Образуются одноклеточный антеридий и аскогон, обычно с трихогиной. При оплодотворении содержимое антеридия по трихогине переходит в аскогон. После плазмогамии гаплоидные ядра разного пола не сливаются сразу, а объединяются попарно, образуя дикарионы. Из аско-гона вырастают аскогенные гифы, в которых ядра дикариона синхронно делятся. На концах аскогенных гиф развиваются сумки (см. рис. 50). Конечная клетка аскоген-ной гифы загибается крючком, ядра дикариона располагаются в месте перегиба и одновременно делятся. Пара ядер разного пола остается в месте перегиба крючка, одно ядро переходит в его кончик, а другое — в основание. Затем образуются две перегородки, отделяющие одноядерные конечную и базальную клетки крючка. В результате слияния этих клеток восстанавливается дикарион и может происходить повторное образование крючка. Средняя двухъядерная клетка крючка развивается в сумку. Она увеличивается в размерах, ядрадикариона сливаются. Образовавшееся диплоидное ядро делится редук-ционно, за мейозом следует еще одно, митотическое деление, и вокруг восьми гаплоидных ядер формируются аскоспоры.[ …]

Прежде всего резко различны происхождение и характер запасающих тканей. Запасающая ткань в сомони голосеменных представляет собой вегетативную часть женского гамето-фита и имеет, следовательно, гаплоидный характер. Эндосперм цветковых формируется, как ужо отмечалось, в результате слияния одного из спермиев с диплоидным ядром центральной клетки зародышевого мешка и у подавляющего большинства растений имеет трип-лоидный характер. В семени некоторых цветковых растений сохраняется в большей или меньшей степени ткань нуцеллуса, преобразующаяся в диплоидную запасающую ткань — перисперм.[ …]

У распространенного в Китае эндомицеса Линднера (Endomyces lindneri), сбраживающего сахарозу и многие моносахариды, зигота не всегда образует сумку сразу, а иногда дает короткую, даже ветвящуюся гифу, на которой образуются сумки.

Что такое инфузория туфелька: среда обитания и способ передвижения

Гифа напоминает по функции аскогенные гифы высших аскомицетов, но, в отличие от них, содержит диплоидные ядра, а не дикарионы.[ …]

В некоторых случаях гетерокариоз может быть основой не только изменчивости и адаптации гриба в результате изменения в его мицелии числа генетически различных ядер, но и рекомбинации признаков. Однако рекомбинация у несовершенных грибов происходит не при мейозе, а при митозе в изредка образующихся в гетерокариотическом мицелии диплоидных ядрах. Такие ядра могут гаплоиди-зироваться в результате утраты ими хромосом.[ …]

Основной признак аскомицетов — образование в результате полового процесса сумок (или асков) — одноклеточных структур, содержащих фиксированное число аскоспор, обычно 8 (рис. 50). Сумки образуются или непосредственно из зиготы (у низших аскомицетов), или на развивающихся из зиготы аскогенных гифах. В сумке происходит слияние ядер зиготы, а затем мейотическое деление диплоидного ядра и образование гаплоидных аскоспор. У высших аскомицетов сумка представляет не только место образования аскоспор, но и активно участвует в их распространении.[ …]

Сформированные сумки плотно прилегают друг к другу, образуя более или менее правильный слой, имеющий сходство с гимением высших сумчатых грибов. Однако в отличие от последних гимений тафриновых грибов не заключен в какие-либо специальные плодовые тела. Слой сумок обычно имеет желтый, красный, розовый или фиолетовый оттенок, придающий необычную окраску зараженному органу. Диплоидное ядро в сумке после окончания ее формирования трижды делится. В результате этого деления возникают 8 гаплоидных ядер, которые дают начало 8 аскоспорам. Споры большей частью округлые или яйцевидные и достигают 7— 10 мкм в диаметре. Эти аскоспоры способны к почкованию, в результате чего число их в сумках может увеличиваться в 2—4 раза.[ …]

Мейоз представляет логически необходимую часть жизненного цикла, размножающегося половым путем, Мейоз обеспечивает расщепление генов — отдельных участков ДНК по отдельным гаметам, в результате чего происходит разнообразное сочетание генов в гаметах. В отношении поддержания постоянства хромосом в клетке оплодотворение составляет антитезу (противоположное) мейозу, о процессе оплодотворения происходит слияние гаплоидных ядер двух разнополых гамет с образованием одной клетки — зиготы с диплоидным ядром.[ …]

Каковы бы ни были причины, способствующие возникновению ауксоспор, установлено главное: ауксоспорообразование всегда связано с половым процессом. У диатомовых водорослей встречаются все три типа полового процесса, вообще известные у водорослей,— изогамный, анизогамный и оогамный, а также некоторые формы редуцированного полового процесса (рис. 91). У пеннатных диатомей половой процесс во всех случаях состоит в сближении двух клеток, в каждой из которых створки раздвигаются и происходит редукционное деление ядра, после чего гаплоидные ядра попарно сливаются и образуется одна или две ауксоспоры. У центрических диатомей попарное сближение клеток отсутствует и ауксоспора образуется из одной клетки, в которой сначала происходит деление материнского диплоидного ядра на четыре гаплоидных ядра, два из них затем редуцируются, а два сливаются в одно диплоидное ядро и образуется ауксоспора.[ …]

Исследованию причин возникновения патологических хромосом в растительных клетках посвящено значительное число работ. В опытах с высшими растениями, отличающимися хорошо дифференцированными тканями, воздействию физических и химических факторов обычно подвергают клетки меристемы либо генеративные клетки репродуктивных органов. Наиболее подробно исследовано действие хлоралгидрата на митоз, при котором парализуется митотический аппарат и" соответственно задерживается прохождение фаз митоза. Например, после одночасовой обработки хлоралгидратом корневой меристемы у бобов нити веретена дегенерируют и митоз прекращается. В результате возникают двухъядерные клетки, диплоидные ядра которых при близком соприкосновении могут слиться, образуя тетраплоидные. Повторное воздействие хлоралгидратом приводит к формированию октаплоидных ядер. Тем не менее, получить этим методом тетраплоидные растения так и не удалось. Более продолжительное действие хлоралгидрата на клетки растений вызывает разрушение ядерного вещества.[ …]

Оставьте комментарий