Содержание
- Фотосинтез. Газообмен в растении
- Листаем страницы биологии:
- ДЫХАНИЕ, ЕГО ОСНОВНЫЕ ЭТАПЫ
- Газообмен в тканях и легких. Строение дыхательной системы
- Внешнее дыхание. Механизм вдоха и выдоха
- Вариант 10
- Анатомия и физиология легких. Механизм газообмена, его нарушения.
- Газообмен и транспорт газов
- Функция внешнего дыхания
- Как осуществляется газообмен у растений
- Лекция №8 -тема «Физиология дыхания»
- 22. Механизм газообмена в легких и тканях.
Фотосинтез. Газообмен в растении
Лист и воздушное питание растений. Вы помните, что питание – это поступление в организм необходимых ему веществ и энергии, их преобразование и усвоение. В процессе питания растения за счет энергии света создают сложные органические соединения из простых неорганических, в чем вы сами можете убедиться.
Выдержите некоторое время комнатное растение (например, бальзамин, герань, гортензию) в темноте для того, чтобы исчерпались запасы крахмала в его листьях. Затем закройте лист с двух сторон непроницаемой для света полоской бумаги с вырезанной в ней какой-либо буквой или словом. Поставьте растение на несколько часов на яркий свет. Сорвите лист, положите его в кипяток, а затем – в горячий спирт; промойте его водой и обработайте раствором йода. Под влиянием йода крахмал синеет. Окрашенной окажется только часть листа напротив вырезов на полоске бумаги. Затененная часть листа останется бесцветной. Так вы смогли убедиться, что сложное органическое соединение крахмал образуется в результате фотосинтеза только в освещенной части листа.
Строение листа приспособлено к осуществлению фотосинтеза. Клетки основной ткани листа содержат хлорофилл, находящийся в хлоропластах.
Вспомните, что для осуществления фотосинтеза, кроме света, необходимы вода и углекислый газ. Вода с растворенными в ней минеральными веществами поступает в растение из почвы, а углекислый газ – из воздуха.
Газообмен осуществляется, главным образом, через устьица листа. В зависимости от количества воды в устьичных клетках их неравномерно утолщенные оболочки растягиваются в разной степени, что способствует открыванию или замыканию устьичной щели. Через эту щель углекислый газ поступает к хлорофиллсодержащим тканям листа, а освобожденный в ходе фотосинтеза кислород выходит наружу. В процессе дыхания кислород, наоборот, поглощается, а углекислый газ поступает в окружающую среду.
Таким образом, процессы фотосинтеза и дыхания противоположны друг другу, но в то же время и взаимосвязаны. В процессе фотосинтеза кислорода освобождается больше, чем потребляется при дыхании, поэтому зеленые растения обогащают им атмосферу. Водяные пары также выходят в окружающую среду через устьица. Как вы помните, этот процесс называется транспирацией. Скорость газообмена в растении регулируется открыванием и закрыванием устьичной щели.
Удостовериться в том, что растение в процессе фотосинтеза выделяет кислород можно с помощью такого опыта. Одно растение плотно накроем стеклянным колпаком и поставим на несколько суток в темное место, а другое, также накрытое колпаком, оставим на свету. Через несколько суток под стеклянные колпаки, которыми накрыты растения, поставим зажженные свечи. Вы сможете убедиться, что свеча будет дольше гореть под колпаком, которым было накрыто освещенное растение. Это объясняется тем, что фотосинтез осуществляется только на свету, поэтому кислород накапливается именно под этим колпаком. В растении, которое оставалось в темноте, в отличие от освещенного, фотосинтез не происходит и кислород, необходимый для горения, не выделяется.
Чтобы выявить дыхание у растений, возьмите два стеклянных сосуда с чистой водой и с веточкой элодеи в каждом. В один из них долейте прозрачной известковой воды. Накройте сосуды колпаками и поставьте в темное место. Через два-три дня можно увидеть, что известковая вода помутнела. Это свидетельствует о том, что растение во время дыхания выделяет углекислый газ, который и реагирует с известковой водой.
Выдающийся российский ученый К.А. Тимирязев в конце XIX века впервые высказал мысль о том, что зеленые растения выступают как бы посредниками между космосом и Землей в процессах преобразования энергии. Ведь именно они улавливают световую энергию Солнца и переводят ее в энергию образованного ими органического вещества, в частности крахмала. Часть этой энергии растения используют для обеспечения собственных процессов жизнедеятельности. Другая часть этой энергии, запасенная в клетках растений, поступает с пищей в растительноядные организмы. Таким образом именно зеленым растениям принадлежит ведущая роль в обеспечении энергией всех живых существ на нашей планете.
За счет кислорода, выделенного растениями, в верхних слоях атмосферы сформировался особый слой атмосферы – так называемый озоновый экран, поглощающий часть вредных для живых существ солнечных и космических ультрафиолетовых лучей.
Кроме воздушного, растениям присуще и минеральное питание. Как вы помните, минеральные вещества поступают в растение из почвы через корневую систему.
Листаем страницы биологии:
Почва и ее роль в жизни растений
Транспорт веществ в растении
Размножение семенных растений
Прорастание семян
Рост и развитие растений
Раздражимость и движения растений
Общая характеристика отдела голосеменные
Разнообразие хвойных растений
Биология (содержание)
ДЫХАНИЕ, ЕГО ОСНОВНЫЕ ЭТАПЫ
Дыхание(respiration)–многоплановый термин.
В биохимии и биоэнергетике дыхание – это многоступенчатый ферментативный процесс окисления субстратов для внутриклеточного освобождения энергии. Если в качестве акцептора электронов выступают нитриты, сульфиты или другие неорганические соединения, то такое дыхание называется анаэробным. Если в качестве конечного акцептора используется молекула кислорода – то говорят об аэробном дыхании. Часть освобожденной в процессе дыхания энергии затрачивается на активный транспорт и создание электрохимических градиентов на мембранах, часть рассеивается в виде тепла, часть аккумулируется в форме высокоэнергетических соединений (АТФ).
В физиологии термином дыхание обозначают процесс газообмена между организмом и средой его обитания, сопровождающийся поглощением кислорода, выделением углекислого газа и метаболической воды.
У одноклеточных и ряда беспозвоночных, не имеющих специализированных образований для газообмена, осуществляется прямое дыхание через покровы без каких-либо движений и изменений объема тела. С увеличением массы тела в процессе эволюции возникают специализированные органы дыхания, имеющие развитую поверхность (жабры, легкие) и вспомогательные образования (дыхательные мышцы, осуществляющие принудительную вентиляцию), обеспечивающие непрямое дыхание.
Наиболее часто под термином «дыхание» подразумевают периодическое движение грудной клетки, изменяющее ее объем и вызывающие возвратно-поступательное движение воздуха в дыхательных путях (респирация). Однако это лишь легко наблюдаемое проявление вентиляции легких.
В случае легочного дыхания выделяется 5 основных этапов процесса дыхания:
1) внешнее дыхание, или вентиляция легких – обмен газов между альвеолами легких и атмосферным воздухом;
2) обмен газов в легких между альвеолярным воздухом и кровью;
3) транспорт газов кровью, т.е. процесс переноса О2 от легких к тканям и СО2 от тканей к легким;
4) обмен газов между кровью капилляров большого круга кровообращения и клетками тканей;
5) внутреннее дыхание – биологическое окисление в митохондриях клетки.
Последний этап в основном изучается биохимиками, а первые 4 являются объектами физиологических исследований. Ещё одним важнейшим объектом физиологического исследования процесса дыхания является нейрогуморальный аппарат его регуляции.
Помимо лёгочной существуют и иные формы внешнего дыхания.
Кожное дыхание у человека в покое обеспечивает около 1,5 – 2,0 % всего газообмена организма за счет кожи, общая поверхность которой составляет 1,5 – 2,0 м2 (зависит от роста, масса тела, пола, возраста). В сутки через кожу в организм попадает около 4 г кислорода и выделяется около 8 г углекислого газа. Эти количества зависят от чистоты кожных покровов, температуры окружающего воздуха и кожи, степени физической нагрузки, давления и др.
То, что газообмен осуществляется в основном в легких, определяется рядом факторов: а) поверхность легких значительно больше поверхности кожи (общая поверхность альвеол по мнению различных авторов составляет от 40 до 140 м2); б) толщина легочной мембраны значительно меньше (0,3-2,0 мкм), чем толщина кожи; в) объемная скорость кровотока легких в 313 раз выше, чем в коже.
Дыхание через слизистые желудка и кишечника. На ранних стадиях эволюции животных пищеварительный тракт выполнял по совместительству дыхательную функцию. В дальнейшем, по мере появления специфических органов дыхания, пищеварительная и дыхательная функции полностью разделились, а дыхательная функция желудочно-кишечного тракта перешла в категорию атавистической. Однако в желудке в обычных условиях может всасываться до 5% кислорода, необходимого для жизнедеятельности организма, в тонком кишечнике – 0,15 мл кислорода на 1 см2 за 1 час, в толстом кишечнике – 0,11 мл. В толстом кишечнике человека в покое всасывается 0,02-0,04 мл кислорода на 1 см2.
Влияние кишечника на дыхание может состоять и в том, что наполнение толстого кишечника газами приводит к подъему диафрагмы и затруднению дыхательных движений.
Искусственное дыхание – это искусственные пути введения кислорода и выведения углекислого газа:
1) подкожное и внутривенное введение кислорода;
2) введение О2 в крупные полости (плевральную, перитонеальную, в суставную сумку);
3) осуществление дыхания с подключением экстракорпорального кровообращения в системе аппарата искусственного кровообращения (оксигенатор-инжектор).
Лёгкие – парные дыхательные органы, расположенные в плевральных полостях. Состоят из разветвлений бронхов, образующих бронхиальное дерево (воздухоносные пути легкого), и системы альвеол, которые вместе с дыхательными бронхиолами, альвеолярными ходами и альвеолярными мешочками составляет альвеолярное дерево (дыхательную паренхиму легкого). На стенках альвеолярных ходов и альвеолярных мешочков, а также дыхательных бронхиол располагаются открывающиеся в их просвет альвеолы легкого. Морфофункциональной единицей респираторного отдела легкого является ацинус. В понятие «ацинус» включаются все разветвления одной концевой бронхиолы – дыхательные бронхиолы всех порядков, альвеолярные ходы и альвеолы. Кровоснабжение легкого осуществляется легочными и бронхиальными сосудами. Легочные сосуды составляют малый круг кровообращения и выполняют главным образом функцию газообмена между кровью и воздухом. Бронхиальные сосуды обеспечивают питание легких и принадлежат большому кругу кровообращения. Между этими двумя системами существуют достаточно выраженные анастомозы. Капилляры образуют 4-12 петель на стенке альвеол и сливаются в посткапилляры. Сеть капилляров в легких очень густая. Общая площадь капиллярной сети одного легкого составляет 35-40 м2.
Основная функция лёгких – дыхательная. Но существуют и недыхательные функции лёгких:
1. Метаболическая. Участие в обмене жиров для образования сурфактантов, синтез простагландинов, синтез тромбопластина и гепарина, синтез протеолитических и липолитических ферментов.
2. Терморегуляторная. При снижении температуры в легких активируются экзотермические процессы (химическая теплопродукция), одновременно уменьшается капиллярный кровоток, а значит и физическая теплоотдача.
3. Барьерная. При вдыхании задерживаются механические частицы, которые потом удаляются ресничками мерцательного эпителия. Для крови – инактивация серотонина, простагландинов, ацетилхолина, брадикина, а также очистка крови от механических примесей.
4. Секреторная. Железы и секреторные клетки продуцируют 300-400 мл в сутки серозно-мукоидного секрета (защита). Эндокринная функция: продукция простагландинов и других биологически активных веществ.
5. Экскреторная. Удаляется углекислый газ, летучие метаболиты, вода (до 500 мл в сутки).
6. Всасывательная. Хорошо всасывается эфир, хлороформ. Возможен ингаляционный путь введения паров и аэрозолей ряда лекарственных веществ.
7. Очистительная. Секреторная деятельность. Активность ресничного эпителия, сосудисто-лимфатический путь.
8.2. МЕХАНИЗМ ВНЕШНЕГО ДЫХАНИЯ И ГАЗООБМЕН В ЛЁГКИХ
У мелких животных дыхательный цикл состоит из вдоха и выдоха, у крупных – включает три фазы: вдох, выдох и паузу. У человека длительность спокойного выдоха на 10-20 % больше длительности вдоха. В условиях полного покоя дыхательная пауза имеет максимальную длительность, при физических или эмоциональных нагрузках – резко сокращается.
Вентиляция лёгких осуществляется за счет создания разности давления между альвеолярным и атмосферным воздухом.
При вдохе давление в альвеолярном пространстве значительно снижается (за счет расширения грудной полости) и становится меньше атмосферного (на 3-5 мм рт. ст.), поэтому воздух из атмосферы входит в воздухоносные пути.
При выдохе давление в альвеолярном пространстве приближается к атмосферному давлению или даже становится выше его (форсированный выдох). Это приводит к удалению очередной порции воздуха из легких.
Внутриплевральное давление меньше атмосферного: на вдохе на 4-9 мм рт.ст., на выдохе на 2-4 мм рт.ст..
При спокойном вдохе и выдохе через легкие проходит около 500 мл воздуха – дыхательный объём (ДО). Из них часть заполняет анатомическое мертвое пространство (около 175 мл). До основной среды доходит около 325 мл воздуха.
В среднем акт дыхания совершается за 4-10 с. Акт вдоха проходит несколько быстрее, чем акт выдоха. За минуту совершается 6-16 дыхательных циклов. Через легкое за минуту проходит около 3-8 л воздуха – это минутный объем дыхания (МОД) или легочная вентиляция.
При форсированном (глубоком) вдохе человек может, после ДО, дополнительно вдохнуть до 2500 мл. Это резервный объем вдоха (РОВд).
Резервный объем выдоха (РОВ) – количество воздуха, которое человек может дополнительно выдохнуть после спокойного выдоха.
Остаточный объем лёгких (ООЛ) – количество воздуха, оставшееся в легких после максимального выдоха. Даже при самом глубоком выдохе в альвеолах и воздухоносных путях остается некоторое количество воздуха.
Ёмкости легких:
Общая емкость легких (ОЕЛ) – количество воздуха, находящегося в легких после максимального вдоха. Равна сумме – остаточный объем + жизненная емкость легких.
Жизненная емкость легких (ЖЕЛ) – наибольшее количество воздуха, которое можно выдохнуть после максимального вдоха. ЖЕЛ = дыхательный объем + резервный объем вдоха + резервный объем выдоха. У мужчин ростом 180 см ЖЕЛ ~ 4,5 л. У пловцов и гребцов до 8,0 л.
Резерв вдоха – максимальное количество воздуха, которое можно вдохнуть после спокойного выдоха. Равен сумме – дыхательный объем + резервный объем вдоха.
Функциональная остаточная емкость (ФОЕ) – количество воздуха, остающееся в легких после спокойного выдоха. Равен сумме – резервный объем выдоха + остаточный объем. У молодых – 2,4 л и около 3,4 у пожилых.
Ключевыми показателями являются – ДО, ЖЕЛ, ФОЕ. У женщин эти показатели, как правило, на 25 % ниже, чем у мужчин.
При спокойном дыхании ФОЕ обновляется примерно на 1/7 часть. За счет этого процентное содержание кислорода и углекислого газа (парциальное давление этих газов) сохраняется на постоянном уровне. Задача всех регуляторных механизмов дыхания — поддерживать постоянство парциального давления кислорода и углекислого газа в альвеолярном пространстве.
Дыхательная мускулатура.
Акт вдоха (инспирация) – процесс активный. Расширение грудной полости совершается дыхательными мышцами. Главная мышца – диафрагма. При её сокращении уплощается купол диафрагмы, что приводит к увеличению верхне-нижнего размера грудной полости. 70-100% вентиляции легких обеспечивается работой диафрагмальных мышц. При спокойном вдохе участвуют т, акже межхрящевые участки межреберных мышц краниальных межреберий, а также наружные межреберные мышцы. При их сокращении поднимаются ребра, отходит грудина. Размеры грудной полости увеличиваются в переднезаднем и поперечном направлениях. При форсированном вдохе дополнительно включаются лестничная, грудино-ключично-сосцевидная, трапециевидная, большая и малая грудные мышцы, мышцы-разгибатели позвоночника.
Акт выдоха (экспирация) в условиях покоя – процесс пассивный. Он происходит на фоне расслабления инспираторной мускулатуры за счёт эластической отдачи энергии, которая накопилась во время вдоха при растяжении эластических структур легких.
При форсированном выдохе сокращаются внутренние межреберные мышцы, которые активно уменьшают объем грудной полости и тем самым повышают плевральное давление, т.е. создают в альвеолах более высокое давление, чем в атмосфере.
Газообмен в тканях и легких. Строение дыхательной системы
Кроме того, сокращаются мышцы брюшной стенки – косая и прямая мышцы живота, межкостные части внутренних межреберных мышц, а также мышцы, сгибающие позвоночник.
Альфа-мотонейроны диафрагмальной мышцы локализованы в шейных сегментах спинного мозга – С2 — С5 . В момент возбуждения нейроны посылают к мышечным волокнам ПД с частотой до 50 Гц и вызывают их тетанус.
Мотонейроны межреберных мышц расположены в грудном отделе спинного мозга (Th1 – Th12) и представлены α- и γ-мотонейронами. За счет γ-мотонейронов происходит оценка степени податливости грудной клетки к растяжению. Когда сила дыхательной мускулатуры недостаточна для акта вдоха, происходит активация проприорецепторов дыхательных мышц, а затем – как следствие – α-мотонейронов.
Респираторное сопротивление состоит из эластического и неэластического.
Эластичность включает в себя растяжимость и упругость. Эластические свойства легких обусловлены: 1) эластичностью альвеолярной ткани (35-40 %) и 2) поверхностным натяжением пленки жидкости, выстилающей альвеолы (55-65 %).
Растяжимость альвеолярной ткани связана с наличием эластиновых волокон, которые вместе с коллагеновыми волокнами (обеспечивают прочность альвеолярной стенки) образуют спиральную сеть вокруг альвеол. Длина эластиновых волокон при растяжении увеличивается почти в 2 раза, коллагеновых – на 10%.
Поверхностное натяжение создаётся за счёт сурфактанта, благодаря которому альвеолы не спадаются. Сурфактант обеспечивает эластичность альвеол.
В целом, эластическое сопротивление пропорционально степени растяжения легких при вдохе: чем глубже дыхание, тем больше эластическое сопротивление (эластическая тяга легких).
Реактивное сопротивление обусловлено: 1) аэродинамическим сопротивлением в дыхательных путях, 2) динамическим сопротивлением перемещающихся при дыхании тканей, 3) инерционным сопротивлением перемещающихся тканей. Основной фактор – аэродинамическое сопротивление.
Основное сопротивление, которое испытывает воздух, возникает при прохождении от трахеи до терминальных бронхиол. Именно в этих зонах совершается перемещение воздушного потока путем конвекции. Линейная скорость воздушного потока максимальна в трахее – 98,4 см/с и минимальна в альвеолярных мешках – 0,02 см/с.
В альвеолах (респираторной зоне) воздушный поток не движется, а происходит диффузия кислорода, углекислого газа, паров воды по градиенту парциального давления. В этой области воздушные потоки уже не испытывают аэродинамического сопротивления.
Дата добавления: 2017-08-01; просмотров: 268;
ПОСМОТРЕТЬ ЕЩЕ:
Внешнее дыхание. Механизм вдоха и выдоха
1234Следующая ⇒
ЛЕКЦИЯ 9
ФИЗИОЛОГИЯ ДЫХАНИЯ
План
1. Дыхание, его значение. Органы дыхания. Основные этапы дыхания.
2. Внешнее дыхание. Механизм вдоха и выдоха.
3. Диффузия газов в легких и тканях.
4. Транспорт газов кровью. Кислородная емкость крови.
5. Дыхательный центр и его автоматия.
6. Регуляция дыхания. Нервные и гуморальные механизмы. Роль рецепторного аппарата.
Вариант 10
Основные дыхательные рефлексы.
7. Функциональная система поддержания газового состава крови в организме.
Дыхание, его значение. Органы дыхания. Основные этапы дыхания.
Организм может существовать нормально только при постоянном поступлении энергии, необходимой для всех процессов жизнедеятельности
Единственным источником энергии является энергия, заключенная между атомами и молекулами питательных веществ
Эта энергия освобождается в организме в результате окислительных процессов
Поэтому организм нуждается в постоянном поступлении кислорода из окружающей среды
В результате окисления органических веществ в клетках образуется углекислый газ, который удаляется в окружающую среду
Таким образом, дыхание — это совокупность процессов, которая обеспечивает поступление кислорода в организм, окисление субстратов в клетках и удаление, образовавшегося при этом углекислого газа из организма
Дыхание осуществляется при помощи органов дыхания, которые представляют воздухоносные пути (носовая полость, глотка, гортань, трахея, бронхи) и дыхательную часть (легкие)
Особенностью строения дыхательных путей является наличие хрящевого остова (в результате стенки дыхательной трубки не спадаются) и мерцательного эпителия, выстилающего слизистую оболочку (его реснички колеблются по направлению движения выдыхаемого воздуха и изгоняют вместе со слизью инородные частицы, загрязняющие дыхательные пути)
Полость носа образована лицевыми костями и хрящами и поделена носовой перегородкой на 2 симметричные половины, которые сообщаются с наружной атмосферой через нос, а сзади — с глоткой при помощи хоан
Слизистая оболочка содержит слизистые железы, секрет которых обволакивает частички пыли, увлажняет воздух и согревает его (т.к. богата поверхностно расположенными кровеносными сосудами) Носовая полость также выполняет функцию обоняния (т.к. слизистая оболочка выстлана обонятельным эпителием
Из полости носа вдыхаемый воздух попадает в носоглотку, далее в ротовую часть глотки и затем в гортань
Гортаньнаходится на уровне IV-VI шейных позвонков, образована хрящами, соединенными между собой суставами, связками и поперчнополосатыми мышцами внутреннюю поверхность выстилает слизистая оболочка
Сзади гортани находится глотка, с которой гортань сообщается при помощи отверстия, называемого входом в гортань.
В средней части гортани находятся голосовые связки
Вдыхаемый воздух вызывает их колебание, в результате чего появляются звуки различного тона и силы
Внизу гортань переходит в дыхательное горло или трахею. Трахея представляет собой хрящевую трубку (состоит из 15-20 гиалиновых Хрящевых полуколец, соединенных кольцевыми связками) длиной 11-13 см, расположенной на уровне нижнего края VI шейного и IV-V грудного позвонков Здесь она делится на два главных бронха (правый и левый)
Каждый из главных бронхов входит в ворота правого или левого легкого и разделяется (по числу основных долей легкого) на долевые бронхи (3 ветви — в правом и 2 ветви — в левом легком)
Эти крупные бронхиальные ветви разветвляются на более мелкие или сегментарные бронхи, которые, продолжая делиться, образуют бронхиальное дерево
По мере деления бронхов происходит уменьшение их калибра, уменьшение хрящевых пластин и увеличение мышечной пластинки слизистой. В мелких бронхах исчезают хрящевые пластинки и железы
Легкие располагаются в грудной полости, по обеим сторонам сердца. Имеют вид половины усеченного конуса, разрезанного пополам от вершины до основания. Основание обращено вниз и прилегает к диафрагме. Закругленная верхушка легкого обращена вверх. На вогнутой поверхности, обращенной к средостению, находятся ворота легкого, куда входят бронхи, артерии и нервы и откуда выходят вены и лимфатические сосуды. Наружная выпуклая поверхность легкого прилегает к ребрам
Правое легкое состоит из 3-х долей, отделенных междолевыми бороздами
Левое — из 2-х долей, разделенных междолевой бороздой
Доли легкого состоят из сегментов, которые образованы дольками. Морфологической и функциональной единицей легкого является ацинус (12-18 ацинусов образуют одну легочную дольку)
Он начинается респираторными бронхиолами, которые переходят в разветвления конечных бронхиол
Каждая респираторная бронхиола подразделяется на альвеолярные ходы, которые заканчиваются альвеолярными мешочками
На стенках альвеолярных ходов и мешочков располагается несколько десятков альвеол
Альвеолы имеют вид открытого пузырька и тесно примыкают друг к другу
Ветви легочных артерий, сопровождая бронхиальное дерево, доходят до альвеол, где образуют капиллярную сеть альвеолярные капилляры собираются в посткапиллярные венулы, а затем в венулы, которые, сливаясь, образуют легочные вены. Такие морфологические особенности обеспечивают оптимальные условия для обмена газов между воздухом альвеол и кровью, протекающей в капиллярах
Дыхание включает следующиеэтапы:
1. Внешнее дыхание — обмен воздуха между внешней средой и альвеолами легких
2. Диффузия газов в легких — газообмен между альвеолярным воздухом и кровью в легочных капиллярах
3. Транспорт газов кровью — перенос газов кровью к тканям
4. Диффузия газов в тканях — газообмен между кровью и тканями в тканевых капиллярах
5. Клеточное дыхание — окисление органических веществ в клетках
Внешнее дыхание. Механизм вдоха и выдоха
Внешнее дыхание предусматривает обмен воздуха между окружающей средой и легкими
атмосферный воздух, насыщенный кислородом, поступает в легкие через воздухоносные пути во время вдоха
При выдохе альвеолярный воздух, насыщенный углекислым газом, удаляется по тем же путям в окружающую среду
Вдох обеспечивается сокращением дыхательной мускулатуры (межреберные мышцы и диафрагма)
В результате сокращения межреберных мышц ребра поднимаются вверх, разворачиваясь вокруг оси, отходят в стороны, грудина отходит вперед
Объем грудной клетки увеличивается (фронтальное и сагиттальное направления)
Диафрагма, сокращаясь, уплощается (опускается вниз) и объем грудной клетки увеличивается в вертикальном направлении
Листки плевры следуют за грудной клеткой и диафрагмой (париетальный листок плотно спаян со стенкой грудной клетки и диафрагмой, висцеральный — с тканью легкого, между ними действуют молекулярные силы сцепления, прижимающие их друг к другу)
В результате легкие пассивно следуют за увеличивающейся в размерах грудной клеткой иобъем легких увеличивается, внутрилегочное давление падает
Атмосферное давление становитсябольшевнутрилегочного и по градиенту давлений происходитзаполнение легких воздухом
Причем, чем больше градиент давлений (определяется степенью сокращения дыхательной мускулатуры, а, следовательно, и степенью увеличения объема грудной клетки) тембольший объем воздуха поступает в легкие
Выдох наступает в результатерасслабления дыхательной мускулатуры ребра (в силу тяжести)опускаются вниз,грудина возвращаетсяназад, диафрагма вновь принимаеткуполообразную форму(под давлением брюшных органов)
Объем грудной клетки уменьшается (во фронтальном, сагиттальном и вертикальном направлениях)
Листки плевры следуют за грудной клеткой и диафрагмой
Объем легких уменьшается,внутрилегочное давление увеличивается, становитсябольше атмосферного и по градиенту давленийвоздух покидает легкие
Движение воздуха в легких во время дыхания называют легочной вентиляцией
1234Следующая ⇒
Дата добавления: 2016-12-03; просмотров: 608 | Нарушение авторских прав
Похожая информация:
Поиск на сайте:
Анатомия и физиология легких. Механизм газообмена, его нарушения.
Предыдущая1234567Следующая
Лёгкое – это парный орган дыхательной системы, располагается в полости грудной клетки.
Левое и правое лёгкое находятся в отдельных плевральных мешках (оболочках), разделяются средостением. Они немного отличаются друг от друга, размерами и некоторыми анатомическими структурами. Лёгкое напоминают форму усечённого конуса, обращённого верхушкой вверх (в сторону ключицы), а основанием вниз. Ткань лёгких, обладает высокой эластичностью и растяжимостью, является важным моментом в выполнении дыхательной функции. Через каждое лёгкое с внутренней стороны, проходят бронх, вена, артерия и лимфатические сосуды.
Обмен газов в легких. Легкие представляют собой герметичные мешки, соединенные с трахеей с помощью крупных воздухоносных путей — бронхов. Атмосферный воздух через носовую и ротовую полость проникает в гортань и далее в трахею, после чего разделяется на два потока, один из которых идет к правому легкому, другой к левому. Трахея и бронхи состоят из соединительной ткани и каркаса из хрящевых колец, которые не позволяют этим трубкам перегибаться и перекрывать воздухоносные пути при различных изменениях положения тела. Войдя в легкие, бронхи разделяются на множество ответвлений, каждое из которых вновь делится, образуя так называемое «бронхиальное дерево». Самые тонкие веточки этого «дерева» называются бронхиолами, и на их концах располагаются легочные пузырьки, или альвеолы. Именно эта поверхность и представляет собой площадь для обмена газами между кровью и воздухом. Стенки альвеолы состоят из одного слоя эпителиальных клеток, к которому вплотную подходят тончайшие кровеносные капилляры, также состоящие из однослойного эпителия. Такая конструкция благодаря диффузии обеспечивает сравнительно легкое проникновение газов из альвеолярного воздуха в капиллярную кровь (кислород) и в обратном направлении (углекислый газ). Этот газообмен происходит в результате того, что создается градиент концентрации газов. Находящийся в альвеолах воздух содержит относительно большое количество О2 и малое СО2.
Газообмен и транспорт газов
В капиллярах, наоборот, концентрация СО2 повышена, а О» понижена, поскольку в этих капиллярах находится венозная кровь, собранная уже после того, как она побывала в тканях и отдала им О2, получив взамен СО2. Кровь по капиллярам протека1ет непрерывно, а воздух в альвеолах обновляется при каждом вдохе. Оттекающая от альвеол обогащенная кислородом кровь содержит сравнительно мало углекислого газа и вновь готова к осуществлению тканевого газообмена.
Понятие о пищеварении. Строение и функции органов пищеварения.
Пищевод.Пища, измельченная в ротовой полости и пропитанная слюной, сформованная в пищевые комки, через зев поступает в глотку, а из нее – в пищевод. Пищевод – мышечная трубка длиной у взрослого человека около 25 см. Внутренняя оболочка пищевода – слизистая, покрыта многослойным плоским эпителием с признаками ороговения в верхних слоях. Эпителий защищает пищевод при движении по нему грубого пищевого комка. Слизистая оболочка образует глубокие продольные складки, что позволяет пищеводу сильно расширяться при прохождении пищевого комка.
Пищеварительный канал состоит из системы органов, которые производят механическую и химическую обработку пищи и ее всасывание. У человека пищеварительный канал имеет вид трубки длиной 8-10 м. Стенка пищеварительной трубки состоит из трех слоев: внутреннего (слизистой оболочки), среднего (мышечной оболочки) и наружного (соединительно-тканной, или серозной, оболочки). Гладкая мышечная ткань средней оболочки имеет два слоя: внутренний – круговой и наружный – продольный. В пищеварительном канале различают следующие отделы:
а) ротовая полость;
б) глотка;
в) пищевод;
г) желудок;
д) тонкий кишечник; в него входят три переходящих друг в друга отдела: двенадцатиперстная кишка, тощая кишка и подвздошная кишка;
е) толстый кишечник – образованный слепой кишкой, частями ободочной кишки (восходящей, поперечной, нисходящей и сигмообразной кишками) и прямой кишкой.
В полость пищеварительного канала поступают пищеварительные соки, образуемые железами. Часть желез расположена в самом пищеварительном канале; крупные железы находятся вне его, и вырабатываемые ими пищеварительные соки попадают в его полость по выводным протокам.
Переваривание пищи начинается в ротовой полости, где происходит механическое раздробление и измельчение пищи при ее пережевывании. В ротовой полости помещаются язык и зубы. Язык – подвижный мышечный орган, покрытый слизистой оболочкой, богато снабженный сосудами и нервами.
Язык передвигает пищу в процессе жевания, служит органом вкуса и речи.
Зубы измельчают пищу; кроме того, они принимают участие в формировании звуков речи. По функции и форме различают резцы, клыки, малые и большие коренные зубы.
Измельченная механически пища в полости рта смешивается со слюной. В ротовую полость открываются протоки трех пар крупных слюнных желез: околоушные, поднижнечелюстные и подъязычные. Кроме того, почти по всей слизистой оболочке ротовой полости и языка расположены мелкие слюнные железки. Интенсивное слюноотделение начинается с появлением молочных зубов.
В слюне содержится фермент амилаза, расщепляющий полисахариды до декстринов, а затем до мальтазы и глюкозы. Белок слюны муцин делает слюну клейкой. Благодаря муцину пропитанная слюной пища легче проглатывается. В составе слюны есть вещество белковой природы – лизоцим, обладающий бактерицидным действием.
18.Печень, ее строение и функции.
Печень— центральный орган межуточного метаболизма и продуцент важного пищеварительного сока — желчи. Относительная величина массы печени постепенно снижается с возрастом. Это снижение является одним из факторов возрастного снижения интенсивности энергетического обмена, поскольку интенсивность окислительного обмена в печени выше, чем во всех других тканях организма.
Пищеварительная функция печени состоит в выработке желчи — комплекса ферментов, предназначенного для эмульгирования жиров, входящих в состав пищи. Только после того, как Жиры превратятся в эмульсию — некое подобие раствора, на них может подействовать фермент липаза, который должен расщепить молекулу жира на глицерин и жирные кислоты. Всасывание нерасщепленных молекул жира в кровь или лимфу невозможно.
Для каждого акта пищеварения требуется довольно значительное количество желчи. Она вырабатывается непрерывно, но не поступает сразу в двенадцатиперстную кишку, а собирается вначале в желчном пузыре, который анатомически входит в состав печени. Выброс накопившейся там желчи зависит от характера пищи и происходит после того, как пищевой комок достиг начального отдела тонкого кишечника.
Печень ребенка выделяет желчь с самого первого дня после рождения. Следует учесть, что пища ребенка этого возраста на 100 % состоит из молока, содержащего эмульгированный жир. У здорового взрослого человека в сутки выделяется от 500 до 1200 мл желчи, т.е. 10—11 мл/кг массы тела.
Обмен веществ и энергии.
Обмен веществ и энергии – основа процессов жизнедеятельности организма. В организме человека, в его органах, тканях, клетках идет непрерывный процесс синтеза, т. е. образования сложных веществ из более простых. Одновременно с этим происходит распад, окисление сложных органических веществ, входящих в состав клеток организма.
Работа организма сопровождается непрерывным его обновлением: одни клетки погибают, другие их заменяют. У взрослого человека в течение суток гибнет и заменяется 1/20 часть клеток кожного эпителия, половина всех клеток эпителия пищеварительного тракта, около 25 г крови и т. д. Рост и обновление клеток организма возможны только случае непрерывного поступления в организм кислорода и питательных веществ. Питательные вещества являются именно тем строительным и пластическим материалом, из которого строится организм.
Для непрерывного обновления, построения новых клеток организма, работы его органов и систем – сердца, желудочно-кишечного тракта, дыхательного аппарата, почек и другого, для совершения человеком работы нужна энергия. Эту энергию человек получает при распаде и окислении в процессе обмена веществ. Следовательно, питательные вещества, поступающие в организм, служат не только пластическим строительным материалом, но и источником энергии, необходимой для нормальной жизнедеятельности организма.
Таким образом, под обменом веществ понимают совокупность изменений, которые претерпевают вещества от момента их поступления в пищеварительный тракт и до образования конечных продуктов распада, выделяемых из организма.
Анаболизм и катаболизм. Обмен веществ, или метаболизм, является тонко согласованным процессом взаимодействия двух взаимно противоположных процессов, протекающих в определенной последовательности. Анаболизмом называют совокупность реакций биологического синтеза, требующих затрат энергии. К анаболическим процессам относятся биологический синтез белков, жиров, липоидов, нуклеиновых кислот. За счет этих реакций простые вещества, поступая в клетки, с участием ферментов вступают в реакции обмена веществ и становятся веществами самого организма. Анаболизм создает основу для непрерывного обновления износившихся структур.
19. Витамины, их роль. Гипо- и гипервитаминозы.
Витамины. Это органические соединения, совершенно необходимые для нормального функционирования организма. Витамины входят в состав многих ферментов, что объясняет важную роль витаминов в обмене веществ. Витамины способствуют действию гормонов, повышению сопротивляемости организма к неблагоприятным воздействиям внешней среды (инфекциям, действию высокой и низкой температуры и т. д.). Они необходимы для стимулирования роста, восстановления тканей и клеток после травм и операций.
В отличие от ферментов и гормонов большинство витаминов не образуются в организме человека. Главным их источником являются овощи, фрукты и ягоды. Содержатся витамины также в молоке, мясе, рыбе. Витамины требуются в очень небольших количествах, но их недостача или отсутствие в пище нарушает образование соответствующих ферментов, что приводит к заболеваниям – авитаминозам.
Все витамины делят на две большие группы: а) растворимые в воде; б) растворимые в жирах. К водорастворимым витаминам относят группу витаминов В, витамины С и Р. К жирорастворимым витаминам – витамины А1 и А2, D, Е, К.
Гѝпервитамино́з — острое расстройство в результате интоксикации сверхвысокой дозой одного или нескольких витаминов (содержащихся в пище или витаминсодержащих лекарствах).
Чаще всего гипервитаминозы вызываются приёмом резко повышенных доз витаминов А и D.
Лечение производится отменой приёма витаминов, обильным питьём (форсированный диурез),антидотами.
Гиповитаминоз (от гипо (греч. ὑπο — под, внизу) и витамины), болезненное состояние, возникающее при нарушении соответствия между расходованием витаминов и поступлением их в организм; то же, что витаминная недостаточность.
Гиповитаминоз развивается при недостаточном поступлении витаминов. Гиповитаминоз развивается незаметно: появляется раздражительность, повышенная утомляемость, снижается внимание, ухудшается аппетит, нарушается сон. Систематический длительный недостаток витаминов в пище снижает работоспособность, сказывается на состоянии отдельных органов и тканей (кожа, слизистые, мышцы, костная ткань) и важнейших функциях организма, таких как рост, интеллектуальные и физические возможности, продолжение рода, защитные силы организма.
Предыдущая1234567Следующая
Функция внешнего дыхания (спирометрия) – это метод функциональной диагностики, Определение функции внешнего дыхания с пробами (ФВД). Диагностика функции внешнего дыхания (спирометрия) — метод определения легочных заболеваний, реакции на проводимое лечение или определения того, Исследование желательно проводить в утренние часы (это. Как мы исследуем функцию внешнего дыхания (ФВД) Когда и зачем мы Это помогает нам делать выводы, опираясь не только на визуальную оценку.
Исследование функции внешнего дыхания — это комплекс диагностических процедур и проб, которые применяются для диагностики заболеваний. Диагностика функции внешнего дыхания (спирометрия) — метод определения легочных заболеваний, реакции на проводимое лечение или определения того, Исследование желательно проводить в утренние часы (это. Спироме́трия, спирогра́фия (spiro-относящие к дыханию,дыхание metria -измерение) — метод исследования функции внешнего дыхания, включающий.
Спирометрия легких показана людям с бронхиальной астмой и хроническим бронхитом, эмфиземой и хроническим воспалением легких, а также в процессе лечения бронхо-легочных заболеваний для отслеживания динамики показателей. Мы проведем точное исследование, выявим всевозможные патологии и поможем вам эффективно контролировать течение заболевания.
Для записи на диагностику звоните по телефону: Мы разработали для Вас специальные годовые программы наблюдения за здоровьем. Услуги каждого пакета ориентированы на поддержание здоровья и профилактику болезней. Программы разработаны для детей разного возраста и гарантируют качественную медицинскую помощь без очереди. Взрослые годовые программы "С заботой о себе" разработаны для тех, кто ответственно подходит к своему здоровью.
Функция внешнего дыхания
Программа разработана с учетом передовых международных стандартов здравоохранения. Программы учитывают возрастные особенности. Все консультации исследования проводятся в один день.
О возможных противопоказаниях необходимо проконсультироваться со специалистами Клиники Ниармедик по телефону: Вся информация, размещенная на сайте компании, носит справочно-ознакомительный характер и не является публичной офертой в соответствии со ст. Полежаевская, Проспект Маршала Жукова, д.
Функция внешнего дыхания Определение функции внешнего дыхания в НИАРМЕДИК Исследование функции внешнего дыхания спирография — это простая диагностическая процедура, которая дает большой объем полезной информации о течении многих заболеваний органов дыхания, эффективности применяемого лечения, стадии развития патологического процесса.
Опытные врачи Квалифицированные врачи высших медицинских категорий с большим практическим опытом тщательно изучают показатели спирометрии, определяют проходимость дыхательных путей и назначают адекватное лечение или корректируют базовую терапию.
Диагностика Программы экспресс-диагностики Консультации для взрослых Консультации для детей Вызовы на дом Определение функции внешнего дыхания что это такое 24 часа Стоматология для детей и взрослых Отделение восстановительной медицины Дневной стационар Вакцинация Ведение беременности Оформление медицинских документов, справок.
Записаться на прием Онлайн-оплата Оставить отзыв Условия получения скидок Депозитный договор Контролирующие органы и законодательные акты Условия предоставления информационных и рекламных сообщений Условия обработки персональных данных Где купить полис ДМС Ребенок на приеме у врача: Страховым компаниям Корпоративным клиентам.
Записаться на приём Онлайн-оплата Оставить отзыв. Главная Услуги и цены Диагностика.
Дыхательные движения
Терапевт высшей категории, кардиолог, гастроэнтеролог, врач функциональной диагностики, заведующий отделением терапии. Стоимость услуг Выдержка из общего прайс-листа. Определение функции внешнего дыхания ФВД. Определение функции внешнего дыхания с пробами ФВД. Показания к проведению спирометрии: Ваш голос принят, спасибо!
Аллергология детская Гинекология детская Дерматология детская Кардиология детская Массаж детям Мануальная терапия детям Неврология детская Оториноларингология детская Офтальмология детская Ортопедия детская Педиатрия Пульмонология детская Стоматология детская Травматология детская Ультразвуковая диагностика детям Урология детская Хирургия детская Физиотерапия детская Эндокринология детская. ЕМС — многопрофильная медицинская компания.
Спасибо за обращение в клинику! Спасибо, что подписались на наши новости. Контактный телефон перезвоните.
Как осуществляется газообмен у растений
Введите свой номер, и мы вам перезвоним отправить. Хотите получать новости и специальные предложения клиники ЕМС по электронной почте?
ФВД — что это?
FAQ Обратная связь Вопросы и предложения. ФВД в медицине, что это такое? Ученые считают, что кошки командуют нами. В связи с этим у читателя может возникнуть ложное представление, что обследование ФВД и спирометрия, это одно и то же. В ряде случаев показана спирометрия с бронхолитиком — это исследование помогает точно определить наличие патологии и предотвратить ее развитие. На самом деле исследование при условии соблюдения всех установленных правил практически безопасно для пациента. Используется и другой способ оценки функции внешнего дыхания.
Описание метода
Кроме того, с ее помощью выявляют спазмы бронхов и определяют, являются ли изменения в системе дыхания обратимыми. Дополнительно нередко назначаются функциональные пробы, регистрирующие изменения этих показателей после действия какого-либо фактора. Наконец, если проба положительная на фоне исходного нормального значения ОФВ1, это говорит о гиперреактивности бронхов или о скрытой бронхиальной обструкции. В конце исследования проводится довольно утомительная регистрация МВЛ, когда пациент в течение 10 секунд дышит максимально глубоко и быстро. Пульсоксиметры широко используют и врачи. Таким образом, исследование помогает оценить вентиляционные способности легких.
Похожие ресурсы:
Category: Серверы
Лекция №8 -тема «Физиология дыхания»
Физиологическое значение дыхательной функции. Эволюция дыхания, типы и виды дыхания. Стадии дыхания. Регуляция дыхания: гуморальная (О2, СО2 и рН) и нервная (безусловно-рефлекторная, условно-рефлекторная и произвольная). Дыхание при физической работе, повышенном и пониженном атмосферном давлении.
Человек и все высокоорганизованные живые существа нуждаются для своей нормальной жизнедеятельности в постоянном поступлении к тканям организма кислорода, который используется в сложном биохимическом процессе окисления питательных веществ, в результате чего выделяется энергия и образуется двуокись углерода и вода.
Дыхание — синоним и неотъемлемый признак жизни. "Пока дышу — надеюсь", утверждали древние римляне, а греки называли атмосферу "пастбищем жизни". Человек в день съедает примерно 1,24 кг пищи, выпивает 2 л воды, но вдыхает свыше 9 кг воздуха (более 10 000 л).
Дыхание— это совокупность процессов, обеспечивающих потребление организмом кислорода и выделение двуокиси углерода. — В условиях покоя в организме за 1 минуту потребляется в среднем 250 — 300 мл О2 и выделяется 200 — 250 мл СО2. При физической работе большой мощности потребность в кислороде существенно возрастает и максимальное потребление кислорода (МПК) достигает у высокотренированных людей около 6 — 7 л/мин.
Дыхание осуществляет перенос О2 из атмосферного воздуха к тканям организма, а в обратном направлении производит удаление СО2 из организма в атмосферу. Различают несколько этапов дыхания:
1. Внешнее дыхание — обмен газов между атмосферой и альвеолами.
2. Обмен газов между альвеолами и кровью легочных капилляров.
3. Транспорт газов кровью — процесс переноса О2 от легких к тканям и СО2 от тканей — к легким.
4. Обмен О2 и СО2 между кровью капилляров и клетками тканей организма.
5. Внутреннее, или тканевое, дыхание — биологическое окисление в митохондриях клетки.
Состав и свойства дыхательных сред
Дыхательной средой для человека является атмосферный воздух, состав которого отличается постоянством. В 1 л сухого воздуха содержится 780 мл азота, 210 мл кислорода и 0,3 мл двуокиси углерода (табл. 1). Остальные 10 мл приходятся на инертные газы — аргон, неон, гелий, криптон, ксенон и водород.
Таблица 1 Содержание и парциальное давление (напряжение) кислорода и углекислого газа в различных средах
Среда | Кислород | Углекислый газ | |||
% | мм рт. ст.
22. Механизм газообмена в легких и тканях. |
мл/л | % | мм рт. ст. | мл/л |
Вдыхаемый воздух | 20,93 | 209,3 | 0,03 | 0,2 | 0,3 |
Выдыхаемый воздух | 16,0 | 160,0 | 4,5 | ||
Альвеолярный воздух | 14,0 | 140,0 | 5,5 | ||
Артериальная кровь | — | 100-96 | 200,0 | — | 560-540 |
Венозная кровь | — | 140-160 | — | ||
Ткань | — | 10-15 | — | — | — |
Около митохондрий | — | 01-1 | — | — | — |
На уровне моря нормальное атмосферное давление составляет 760 мм рт ст. Согласно закону Дальтона эта величина складывается из парциальных давлений всех газов, входящих в состав воздуха. Атмосферный воздух содержит также пары воды. В умеренном климате при температуре 22°С парциальное давление водяного пара в воздухе составляет 20 мм рт.ст. Парциальное давление водяного пара, уравновешенного в легких с кровью при атмосферном давлении 760 мм рт.ст. и температуре тела 37°С, составляет 47 мм рт.ст. Учитывая, что давление водяных паров в организме выше, чем в окружающей среде, в процессе дыхания организм теряет воду.
Внешнее дыхание
Внешнее дыхание осуществляется благодаря изменениям объема грудной клетки и сопутствующим изменениям объема легких. Во время вдоха объем грудной клетки увеличивается, а во время выдоха — уменьшается. В дыхательных движениях участвуют:
1. Дыхательные пути, которые по своим свойствам являются слегка растяжимыми, сжимаемыми и создают поток воздуха. Дыхательная система состоит из тканей и органов, обеспечивающих легочную вентиляцию и легочное дыхание (воздухоносные пути, легкие и элементы костно-мышечной системы). К воздухоносным путям, управляющим потоком воздуха, относятся: нос, полость носа, носоглотка, гортань, трахея, бронхи и бронхиолы. Легкие состоят из бронхиол и альвеолярных мешочков, а также из артерий, капилляров и вен легочного круга кровообращения. К элементам костно-мышечной системы, связанным с дыханием, относятся ребра, межреберные мышцы, диафрагма и вспомогательные дыхательные мышцы. Нос и полость носа служат проводящими каналами для воздуха, где он нагревается, увлажняется и фильтруется. Полость носа выстлана богато васкулиризированной слизистой оболочкой. В верхней части полости носа лежат обонятельные рецепторы. Носовые ходы открываются в носоглотку. Гортань лежит между трахеей и корнем языка. У нижнего конца гортани начинается трахея и спускается в грудную полость, где делится на правый и левый бронхи. Установлено, что дыхательные пути от трахеи до концевых дыхательных единиц (альвеол) ветвятся (раздваиваются) 23 раза. Первые 16 "поколений" дыхательных путей — бронхи и бронхиолы выполняют проводящую функцию. "Поколения" 17-22 — респираторные бронхиолы и альвеолярные ходы, составляют переходную (транзиторную) зону, и только 23-е "поколение" является дыхательной респираторной зоной и целиком состоит из альвеолярных мешочков с альвеолами. Общая площадь поперечного сечения дыхательных путей по мере ветвления возрастает более чем в 4,5 тысячи раз. Правый бронх обычно короче и шире левого.
2. Эластическая и растяжимая легочная ткань. Респираторный отдел представлен альвеолами. В легких имеется три типа альвеолоцитов (пневмоцитов), выполняющих разную функцию. Альвеолоциты второго типа осуществляют синтез липидов и фосфолипидов легочного сурфактанта. Общая площадь альвеол у взрослого человека достигает 80-90 м2, т.е. примерно в 50 раз превышает поверхность тела человека.
3. Грудная клетка, состоящая из пассивной костно-хрящевой основы, которая соединена соединительными связками и дыхательными мышцами, осуществляющими поднятие и опускание ребер и движения купола диафрагмы. За счет большого количества эластической ткани легкие, обладая значительной растяжимостью и эластичностью, пассивно следуют за всеми изменениями конфигурации и объема грудной клетки. Чем больше разность между давлением воздуха внутри и снаружи легкого, тем больше они будут растягиваться. Для иллюстрации этого положения служит модель Дондерса.
Рис.1. Модель Дондерса:
а — экскурсия легких в конце выдоха; б — экскурсия легких во время вдоха
Существуют два механизма, вызывающие изменение объема грудной клетки: поднятие и опускание ребер и движения купола диафрагмы. Дыхательные мышцы подразделяются на инспираторные и экспираторные.
Инспираторными мышцами являются диафрагма, наружные межреберные и межхрящевые мышцы. При спокойном дыхании объем грудной клетки изменяется в основном за счет сокращения диафрагмы и перемещения ее купола. всего на 1 см соответствует увеличение емкости грудной полости примерно на 200 — 300 мл. При глубоком форсированном дыхании участвуют дополнительные мышцы вдоха: трапециевидные, передние лестничные и грудино-ключично-сосцевидные мышцы. Они включаются в активный процесс дыхания при значительно больших величинах легочной вентиляции, например, при восхождении альпинистов на большие высоты или при дыхательной недостаточности, когда в процесс дыхания вступают почти все мышцы туловища.
Экспираторными мышцами являются внутренние межреберные и мышцы брюшной стенки, или мышцы живота. Каждое ребро способно вращаться вокруг оси, проходящей через две точки подвижного соединения с телом и поперечным отростком соответствующего позвонка.
Верхние отделы грудной клетки на вдохе расширяются преимущественно в переднезаднем направлении, а нижние отделы больше расширяются в боковых направлениях, так как ось вращения нижних ребер занимает сагиттальное положение.
В фазу вдоха наружные межреберные мышцы, сокращаясь, поднимают ребра, а в фазу выдоха ребра опускаются благодаря активности внутренних межреберных мышц.
При обычном спокойном дыхании выдох осуществляется пассивно, поскольку грудная клетка и легкие спадаются — стремятся занять после вдоха то положение, из которого они были выведены сокращением дыхательных мышц. Однако при кашле, рвоте, натуживании мышцы выдоха активны.
При спокойном вдохе увеличение объема грудной клетки составляет примерно 500-600 мл. Движение диафрагмы во время дыхания обусловливает до 80% вентиляции легких. У спортсменов высокой квалификации во время глубокого дыхания купол диафрагмы может смещаться до 10-12 см.