На мембранах гранулярной эндоплазматической сети происходит синтез

Эндоплазматическую сеть (ЭПС), или эндоплазматический ретикулум (ЭПР), удалось обнаружить только с появлением электронного микроскопа. ЭПС есть только в эукариотических клетках и представляет собой сложную систему мембран, образующих уплощенные полости и трубочки. Все вместе это выглядит как сеть. ЭПС относится к одномембранным органоидам клетки.

Мембраны ЭПС отходят от внешней мембраны ядра и по строению сходны с ней.

Эндоплазматическая сеть делится на гладкую (агранулярную) и шероховатую (гранулярную). Последняя усеяна прикрепленными к ней рибосомами (из-за этого и возникает «шероховатость»). Основная функция обоих типов связана с синтезом и транспортом веществ. Только шероховатая отвечает за белок, а гладкая — за углеводы и жиры.

По своему строению ЭПС представляет собой множество парных параллельных мембран, пронизывающих почти всю цитоплазму. Пара мембран образует пластинку (полость внутри имеет разную ширину и высоту), однако гладкая эндоплазматическая сеть в большей степени имеет трубчатое строение. Такие уплощенные мембранные мешочки называют цистернами ЭПС.

Рибосомы, расположенные на шероховатой ЭПС, синтезируют белки, которые поступают в каналы ЭПС, созревают (приобретают третичную структуру) там и транспортируются. У таких белков сначала синтезируется сигнальная последовательность (состоящая преимущественно из неполярных аминокислот), конфигурация которой соответствует специфическому рецептору ЭПС. В результате рибосома и эндоплазматическая сеть связываются. При этом рецептор образует канал для перехода синтезируемого белка в цистерны ЭПС.

После того, как белок оказывается в канале эндоплазматического ретикулума сигнальная последовательность от него отделяется. После этого он свертывается в свою третичную структуру. При транспортировке по ЭПС белок приобретает ряд других изменений (фосфорилирование, образование связи с углеводом, т. е. превращение в гликопротеин).

Большинство белков, оказавшихся в шероховатой ЭПС, далее попадают в аппарат (комплекс) Гольджи. Оттуда белки либо секретируются из клетки, либо поступают в другие органоиды (обычно лизосомы), либо откладываются как гранулы запасных веществ.

Следует иметь в виду, что не все белки клетки синтезируются на шероховатой ЭПС. Часть (обычно меньшая) синтезируется свободными рибосомами в гиалоплазме, такие белки используются самой клеткой. У них сигнальная последовательность не синтезируется за ненужностью.

Основной функцией гладкой эндоплазматической сети является синтез липидов (жиров). Например, ЭПС эпителия кишечника синтезирует их из жирных кислот и глицерола, всасывающихся из кишечника. Затем липиды попадают в комплекс Гольджи. Кроме клеток кишечника, гладкая ЭПС хорошо развита в клетках, секретирующих стероидные гормоны (стероиды относятся к липидам). Например, в клетках надпочечников, интерстициальных клетках семенников.

Синтез и транспорт белков, жиров и углеводов не единственные функции ЭПС. В печение эндоплазматический ретикулум участвует в процессах детоксикации. Особая форма гладкой ЭПС — саркоплазматический ретикулум – присутствует в мышечных клетках и обеспечивает сокращение за счет перекачки ионов кальция.

Структура, объем и функциональность эндоплазматической сети клетки не является постоянной на протяжении клеточного цикла, а подвержены тем или иным изменениям.

Эндоплазматическая сеть

Эндоплазматический ретикулум (ЭПС) — система сообщающихся или отдельных трубчатых каналов и уплощенных цистерн, расположенных по всей цитоплазме клетки. Они отграничены мембранами (мембранными органеллами). Иногда цистерны имеют расширения в виде пузырьков. Каналы ЭПС могут соединяться с поверхностной или ядерной мембранами, контактировать с комплексом Гольджи.

В данной системе можно выделить гладкую и шероховатую (гранулярную) ЭПС.

Шероховатая ЭПС

На каналах шероховатой ЭПС в виде полисом расположены рибосомы. Здесь протекает синтез белков, преимущественно продуцируемых клеткой на экспорт (удаление из клетки), например, секретов железистых клеток. Здесь же происходят образование липидов и белков цитоплазматической мембраны и их сборка. Плотно упакованные цистерны и каналы гранулярной ЭПС образуют слоистую структуру, где наиболее активно протекает синтез белка. Это место называется эргастоплазмой.

Гладкая ЭПС

На мембранах гладкой ЭПС рибосом нет. Здесь протекает в основном синтез жиров и подобных им веществ (например, стероидных гормонов), а также углеводов. По каналам гладкой ЭПС также происходит перемещение готового материала к месту его упаковки в гранулы (в зону комплекса Гольджи). В печеночных клетках гладкая ЭПС принимает участие в разрушении и обезвреживании ряда токсичных и лекарственных веществ (например, барбитуратов).

Схема синтеза белка на рибосомах гранулярной эндоплазматической сети.

В поперечно-полосатой мускулатуре канальцы и цистерны гладкой ЭПС депонируют ионы кальция.

Комплекс Гольджи

Пластинчатый комплекс Гольджи — это упаковочный центр клетки. Представляет собой совокупность диктиосом (от нескольких десятков до сотен и тысяч на одну клетку). Диктиосома — стопка из 3—12 уплощенных цистерн овальной формы, по краям которых расположены мелкие пузырьки (везикулы). Более крупные расширения цистерн дают вакуоли, содержащие резерв воды в клетке и отвечающие за поддержание тургора. Пластинчатый комплекс дает начало секреторным вакуолям, в которых содержатся вещества, предназначенные для вывода из клетки. При этом просекрет, поступающий в вакуоль из зоны синтеза, (ЭПС, митохондрии, рибосомы), подвергается здесь некоторым химическим превращениям.

Комплекс Гольджи дает начало первичным лизосомам. В диктиосомах также синтезируются полисахариды, гликопротеиды и гликолипиды, которые затем идут на построение цитоплазматических мембран.

Н. С. Курбатова, Е. А. Козлова "Конспект лекций по общей биологии"

Эндоплазматическая сеть (эндоплазматический ретикулум) была открыта К. Р. Портером в 1945 г.

Эта структура представляет собой систему взаимосвязанных вакуолей, плоских мембранных мешков или трубчатых образований, создающих мембранную трехмерную сеть внутри цитоплазмы. Эндоплазматическая сеть (ЭПС) встречается практически у всех эукариотов. Она связывает органеллы между собой и транспортирует питательные вещества. Различают две самостоятельные органеллы: гранулярную (зернистую) и гладкую незернистую (агранулярную) эндоплазматическую сеть.

Гранулярная (шероховатая, или зернистая) эндоплазматическая сеть. Представляет собой систему плоских, иногда расширенных цистерн, канальцев, транспортных пузырьков. Размер цистерн зависит от функциональной активности клеток, а ширина просвета может составлять от 20 нм до нескольких мкм. Если цистерна резко расширяется, то она становится заметной при световой микроскопии и ее идентифицируют как вакуоль.

Цистерны образованы двухслойной мембраной, на поверхности которой содержатся специфические рецепторные комплексы, обеспечивающие прикрепление к мембране рибосом, транслирующие полипептидные цепочки секреторных и лизосомальных белков, белков цитолеммы и др., то есть белков, не сливающихся с содержимым кариоплазмы и гиалоплазмы.

Пространство между мембранами заполнено однородным матриксом низкой электронной плотности. Снаружи мембраны покрыты рибосомами. Рибосомы при электронной микроскопии видны как мелкие (диаметром около 20 нм), темные, почти округлые частицы. Если их много, то это придает зернистый вид наружной поверхности мембраны, что и послужило основой для названия органеллы.

На мембранах рибосомы располагаются в виде скоплений — полисом, которые образуют разнообразные по форме розетки, гроздья или спирали. Такая особенность распределения рибосом объясняется тем, что они связаны с одной из иРНК, с которой считывают информацию, синтезируют полипептидные цепочки. Такие рибосомы прикрепляются к мембране ЭПС с помощью одного из участков большой субъединицы.

В некоторых клетках гранулярная эндоплазматическая сеть (гр. ЭПС) состоит из редких разрозненных цистерн, но может образовывать крупные локальные (очаговые) скопления. Слабо развита гр. ЭПС в малодифференцированных клетках или в клетках с низкой секрецией белков. Скопления гр. ЭПС находятся в клетках, активно синтезирующих секреторные белки. При повышении функциональной активности цистерны органеллы становятся множественными и нередко расширяются.

Гр. ЭПС хорошо развита в секреторных клетках поджелудочной железы, главных клетках желудка, в нейронах и др. В зависимости от типа клеток гр. ЭПС может распределяться диффузно или локализоваться в одном из полюсов клетки, при этом многочисленные рибосомы окрашивают данную зону базофильно. Например, в плазматических клетках (плазмоцитах) хорошо развитая гр. ЭПС обусловливает яркую базофильную окраску цитоплазмы и соответствует участкам концентрации рибонуклеиновых кислот. В нейронах органелла располагается в виде компактно лежащих параллельных цистерн, что при световой микроскопии проявляется в виде базофильной зернистости в цитоплазме (хроматофильное вещество цитоплазмы, или тигроид).

В большинстве случаев на гр. ЭПС синтезируются белки, которые не используются самой клеткой, а выделяются во внешнюю среду: белки экзокринных желез организма, гормоны, медиаторы (белковые вещества эндокринных желез и нейронов), белки межклеточного вещества (белки коллагеновых и эластических волокон, основного компонента межклеточного вещества). Белки, образуемые гр. ЭПС, входят также в состав лизосомальных гидролитических ферментных комплексов, располагающихся на внешней поверхности мембраны клетки. Синтезированный полипептид не толькко накапливается в полости ЭПС, но и перемещается, транспортируется по каналам и вакуолям от места синтеза в другие участки клетки. В первую очередь такой транспорт осуществляется в направлении комплекса Гольджи. При электронной микроскопии хорошее развитие ЭПС сопровождается параллельным увеличением (гипертрофией) комплекса Гольджи. Параллельно с ним усиливается развитие ядрышек, увеличивается число ядерных пор. Нередко в таких клетках имеются многочисленные секреторные включения (гранулы), содержащие секреторные белки, увеличивается число митохондрий.

Белки, накапливающиеся в полостях ЭПС, минуя гиалоплазму, чаще всего транспортируются в комплекс Гольджи, где они модифицируются и входят в состав либо лизосом, либо секреторных гранул, содержимое которых остается изолированным от гиалоплазмы мембраной. Внутри канальцев или вакуолей гр. ЭПС происходит модификация белков, связывание их с сахарами (первичное гликозилирование); конденсация синтезированных белков с образованием крупных агрегатов — секреторных гранул.

На рибосомах гр. ЭПС синтезируются мембранные интегральные белки, встраивающиеся в толщу мембраны. Здесь же со стороны гиалоплазмы идет синтез липидов и их встраивание в мембрану. В результате этих двух процессов наращиваются сами мембраны ЭПС и другие компоненты вакуолярной системы.

Основная функция гр. ЭПС — это синтез на рибосомах экспортируемых белков, изоляция от содержимого гиалоплазмы внутри мембранных полостей и транспорт этих белков в другие участки клетки, химическая модификация или локальная конденсация, а также синтез структурных компонентов клеточных мембран.

В процессе трансляции рибосомы прикрепляются к мембране гр. ЭПС в виде цепочки (полисомы). Возможность связаться с мембраной обеспечивают сигнальные участки, которые прикрепил ются к специальным рецепторам ЭПС — причальный белок. После этого рибосома связывается с белком, фиксирующим ее к мембране, а образующаяся полипептидная цепочка транспортируется через поры мембран, которые открываются при помощи рецепторов. В результате субъединицы белков оказываются в межмембранном пространстве гр. ЭПС. К образующимся полипептидам может присоединиться олигосахарид (гликозилирование), который отщепляется от долихол-фосфата, прикрепленного к внутренней поверхности мембраны. В последующем содержимое просвета канальцев и цистерн гр. ЭПС с помощью транспортных пузырьков переносится в цис-компартмент комплекса Гольджи, где подвергается дальнейшей трансформации.

Гладкая (агранулярная) ЭПС. Она может быть связана с гр. ЭПС переходной зоной, но, тем не менее, является самостоятельной органеллой с собственной системой рецепторных и ферментативных комплексов. Она состоит из сложной сети канальцев, плоских и расширенных цистерн и транспортных пузырьков, но если в гр. ЭПС преобладают цистерны, то в гладкой эндоплазматической сети (глад. ЭПС) больше канальцев диаметром около 50…100 нм.

К мембранам глад. ЭПС не прикрепляются рибосомы, что обусловлено отсутствием рецепторов к этим органеллам. Таким образом, глад. ЭПС хотя и является морфологическим продолжением гранулярной, не просто эндоплазматическая сеть, на которой в данный момент нет рибосом, а представляет собой самостоятельную органеллу, на которую рибосомы не могут прикрепиться.

Глад. ЭПС участвует в синтезе жиров, метаболизме гликогена, полисахаридов, стероидных гормонов и некоторых лекарственных веществ (в частности, барбитуратов). В глад. ЭПС проходят заключительные этапы синтеза всех липидов клеточных мембран. На мембранах глад. ЭПС находятся липидтрансформирующие ферменты — флиппазы, перемещающиеся молекулы жиров и поддерживающие асимметрию липидных слоев.

Глад. ЭПС хорошо развита в мышечных тканях, особенно поперечнополосатых. В скелетных и сердечных мышцах она формирует крупную специализированную структуру — саркоплазматический ретикулум, или L-систему.

Саркоплазматический ретикулум состоит из взаимно переходящих друг в друга сетей L-трубочек и краевых цистерн. Они оплетают специальные сократительные органеллы мышц — миофибриллы. В поперечнополосатых мышечных тканях органелла содержит белок — кальсеквестрин, связывающий до 50 ионов Са2+. В гладких мышечных клетках и немышечных клетках в межмембранном пространстве имеется белок кальретикулин, также связывающий Са2+.

Таким образом, глад. ЭПС является резервуаром ионов Са2+. В момент возбуждения клетки при деполяризации ее мембраны ионы кальция выводятся из ЭПС в гиалоплазму ведущий механизм, запускающий сокращение мышц.

Гранулярная эндоплазматическая сеть

Это сопровождается сокращением клеток и мышечных волокон за счет взаимодействия актомиозиновых или актоминимиозиновых комплексов миофибрилл. В покое происходит обратное всасывание Са2+ в просвет канальцев глад. ЭПС, что ведет к снижению содержания кальция в матриксе цитоплазмы и сопровождается расслаблением миофибрилл. Белки кальциевого насоса регулируют трансмембранный перенос ионов.

Повышение концентрации ионов Са2+ в матриксе цитоплазмы также ускоряет секреторную активность немышечных клеток, стимулирует движение ресничек и жгутиков.

Глад. ЭПС дезактивирует различные вредные для организма вещества за счет их окисления с помощью ряда специальных ферментов, особенно в клетках печени. Так, при некоторых отравлениях в клетках печени появляются ацидофильные зоны (не содержащие РНК), сплошь заполненные гладким эндоплазматическим ретикулумом.

В коре надпочечников, в эндокринных клетках половых желез глад. ЭПС участвует в синтезе стероидных гормонов, и на ее мембранах находятся ключевые ферменты стероидогенеза. В таких эндокриноцитах глад. ЭПС имеет вид обильных канальцев, которые в поперечном сечении видны как многочисленные пузырьки.

Глад. ЭПС образуется из гр. ЭПС. В отдельных участках глад. ЭПС образуются новые липопротеидные мембранные участки, лишенные рибосом. Эти участки могут разрастаться, отщепляться от гранулярных мембран и функционировать как самостоятельная вакуолярная система.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Google+

Одноклассники

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ, эндоплазматический ретикулум (от эндо…

Гранулярная эндоплазматическая сеть

и плазма), органоид эукариотной клетки. Открыт К. Портером в 1945 в эндоплазме фибробластов. Представляет собой систему мелких вакуолей и канальцев, соединённых друг с другом и ограниченных одинарной мембраной. Мембраны эндоплазматической сети, толщиной 5—7 нм, в ряде случаев непосредственно переходят в наружную ядерную мембрану. Производными эндоплазматическими сетями являются микротельца, а в растительных клетках — вакуоли. Различают гладкую (агранулярную) и гранулярную эндоплазматическую сеть. Гладкая эндоплазматическая сеть лишена рибосом. Состоит из сильно ветвящихся канальцев и мелких вакуолей диаметром 50–100 нм. По-видимому, является производным гранулярной эндоплазматической сети, в некоторых случаях их мембраны непосредственно переходят друг в друга. Функции: синтез триглицеридов и образование большей части липидов клетки, накопление капелек липидов (например, при жировой дистрофии), обмен некоторых полисахаридов (гликоген), накопление и выведение из клетки ядовитых веществ, синтез стероидных гормонов. В мышечных волокнах образуется саркоплазматическая сеть, которая, выбрасывая и накапливая ионы кальция, вызывает сокращение и расслабление волокна. Наиболее развита в клетках, секретирующих небелковые продукты (коры надпочечников, половых желёз, обкладочных клетках желёз дна желудка и т. п.). Гранулярная эндоплазматическая сеть имеет рибосомы на мембранах. Состоит из канальцев и уплощённых цистерн, во многих клетках формирует разветвлённую сеть, пронизывающую большую часть цитоплазмы. Основная функция — синтез белков на прикреплённых к мембране снаружи комплексах рибосом — полирибосомах. Синтезируются в основном белки, которые выводятся из клетки наружу либо трансформируются в комплексе Гольджи. Синтезированные белки поступают в полости гранулярной эндоплазматической сети, где осуществляется АТФ-зависимый транспорт белков и может происходить их модификация и концентрация. Наиболее развита в клетках с белковой секрецией (поджелудочной железы, слюнных желёз, плазмоцитах и т. п.) и практически отсутствует в эмбриональных недифференцированных клетках.

ЭНДОПЛАЗМАТИЧЕСКАЯ СЕТЬ (ЭПС)

Эндоплазматическая сеть (ЭПС) – система уплощенных, трубчатых, везикулярных структур, ограниченных мембраной. Название обусловлено тем, что её многочисленные элементы (цистерны, трубочки, пузырьки) образуют единую, непрерывную трехмерную сеть.

Степень развития ЭПС варьирует в различных клетках, и даже в разных участках одной и той же клетки, и зависит от функциональной активности клеток.

Различают две разновидности ЭПС (рис.4):

гранулярную ЭПС (грЭПС) и

гладкую, или агранулярную ЭПС (аЭПС), которые связаны между собой в переходной области.

Рис.4.

Гранулярная ЭПС образована мембранными трубочками и уплощенными цистернами, на наружной (обращенной в сторону гиалоплазмы) поверхности которых расположены рибосомы. Прикрепление рибосом происходит благодаря интегральным рецепторным белкам мембран грЭПС – рибофоринам. Эти же белки формируют гидрофобные каналы в мембране грЭПС для проникновения синтезированной белковой цепочки в просвет цистерн.

Основная функция грЭПС: сегрегация (отделение) вновь синтезированных белковых молекул от гиалоплазмы.

Таким образом, грЭПС обеспечивает:

биосинтез белков, предназначенных для экспорта из клетки;

биосинтез ферментов лизосом

биосинтез мембранных белков.

Белковые молекулы накапливаются внутри просвета цистерн, приобретают вторичную и третичную структуру, а также подвергаются начальным посттрансляционным изменениям – гидроксилированию, сульфатированию, фосфорилированию и гликозилированию (присоединение к белкам олигосахаридов с образованием гликопротеинов).

ГрЭПС присутствует во всех клетках, но в наибольшей степени эта сеть развита в клетках, специализирующихся на белковом синтезе, таких как, клетки поджелудочной железы, вырабатывающих пищеварительные ферменты; фибробласты соединительной ткани, синтезирующих коллаген; плазматические клетки, продуцирующих иммуноглобулины. В этих клетках элементы грЭПС образуют параллельные скопления цистерн; при этом просвет цистерн часто расширен. Для всех этих клеток характерна выраженная базофилия цитоплазмы в области расположения элементов грЭПС.

Агранулярная ЭПС представляет собой трехмерную сеть мембранных трубочек, канальцев, пузырьков, на поверхности которых рибосомы отсутствуют.

Функции агрЭПС

• участие в синтезе липидов, в том числе мембранных, холестерина и стероидов;

• метаболизм гликогена;

• нейтрализация и детоксикация эндогенных и экзогенных токсичных веществ;

• накопление ионов Са (особенно в специализированной виде аЭПС – саркоплазматической сети мышечных клеток).

АгрЭПС хорошо развита:

• в клетках, активно продуцирующих стероидные гормоны – клетки коркового вещества надпочечников, интерстициальные гландулоциты яичка, клетки желтого тела яичника.

• в клетках печени, где её ферменты участвуют в метаболизме гликогена, а также в процессах, которые обеспечивают нейтрализацию и детоксикацию эндогенных биологически активных веществ (гормонов) и экзогенных вредных веществ (алкоголя, лекарственных веществ и др.).

КОМПЛЕКС ГОЛЬДЖИ – мембранная органелла, образованная тремя основными элементами (рис.5): скоплениями уплощенных цистерн, мелкими (транспортными) пузырьками и конденсирующими вакуолями.

Комплекс этих элементов называется диктиосомой.

Рис.5.

Цистерны имеют вид изогнутых дисков с несколько расширенными периферическими отделами. Цистерны образуют группу в виде стопки из 3-30 элементов. От периферических расширений цистерн отщепляются пузырьки и вакуоли.

Пузырьки – мелкие (диаметр 40-80 нм), окруженные мембраной сферические элементы с содержимым умеренной электронной плотности.

Эндоплазматическая сеть

Вакуоли – крупные (диаметр 0.1-1.0 мкм), сферические образования, отделяющиеся от зрелой поверхности комплекса Гольджи в некоторых железистых клетках. Вакуоли содержат секреторный продукт, находящийся в процессе конденсации.

Комплекс Гольджи обладаетполярностью: в каждой диктиосоме выделяют две поверхности:

формирующаяся (незрелая,илицис-поверхность) и

зрелая (транс-поверхность).

Цис-поверхность выпуклой формы обращена в сторону ЭПС и связана с ней системой мелких транспортных пузырьков, отщепляющих от ЭПС. Таким образом, белки в транспортных пузырьках проникают через цис-поверхность.

Каждая группа медиальных цистерн внутри стопки отличается особым составом ферментов, и для каждой группы характерны свои реакции обработки белков. Обработанные вещества выходят в вакуолях с вогнутой транс-поверхности.

Дата добавления: 2017-01-08; просмотров: 1618;

Похожие статьи:

Оставьте комментарий