Мутационная изменчивость это в биологии

Мутационная изменчивость – изменчивость, вызванная возникновением мутации. Мутации – наследственные изменения признака, органа или свойства, обусловленные изменениями в строении хромосом.

Классификации мутаций:

По фенотипу:

1. Морфологические – изменяется характер роста и изменение органов. К морфологическим относятся мутации, ведущие к видимым изменениям фенотипа. Например, рецессивная мутация по гену white у дрозофилы в гомозиготном состоянии обусловливает белую окраску глаз, в то время как доминантная аллель гена дикого типа контролирует красную окраску глаз, присущую мухам из природных популяций.

2. Физиологические – повышается (понижается) жизнеспособность. К физиологическим относятся мутации, влияющие на жизнедеятельность организмов, их развитие, ведущие к нарушению таких процессов, как кровообращение, дыхание, умственная деятельность у человека, поведенческие реакции и т.п. Например, гемофилия — наследственное заболевание, связанное с нарушением процесса свёртывания крови.

3. Биохимические – тормозят или изменяют синтез определенных химических веществ в организме. Биохимические мутации представляют собой обширную группу, объединяющую все случаи изменения активности ферментов от их полного выключения до включения в норме неактивных метаболических путей. Примером могут служить многочисленные мутации к ауксотрофности у микроорганизмов, носители которых в отличие от организмов дикого типа – прототрофов — не способны самостоятельно синтезировать необходимые для жизнедеятельности вещества — аминокислоты, витамины, предшественники нуклеиновых кислот и т.д. К биохимическим относятся и различные мутации, нарушающие синтез ферментов, участвующих в репликации ДНК, репараций ее повреждений, транскрипции и трансляции генетического материала.

По генотипу:

1. Генные – изменение структуры молекулы ДНК на участке определенного гена, кодирующего синтез соответствующей белковой молекулы. Результатом генной мутации у человека являются такие заболевания, как серповидно-клеточная анемия, дальтонизм, гемофилия. Вследствие генной мутации возникают новые аллели генов, что имеет значение для эволюционного процесса.

2. Хромосомные – изменение структуры хромосом, связанное с разрывом хромосом (при воздействии на ядро радиации или химических веществ).

3. Геномные – это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом. Разные виды геномных мутаций называют гетероплоидией и полиплоидией.

Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии — кратного изменения числа хромосом. У полиплоидных организмов гаплоидный набор хромосом n в клетках повторяется не два (2n), как у диплоидов, а значительно большее число раз (3n, 4п, 5п и до 12n). Полиплоидия — следствие нарушения хода митоза или мейоза: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки. В результате возникают гаметы с числом хромосом 2n. При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом. Если геномная мутация происходит не в половых, а в соматических клетках, то в организме возникают клоны (линии) полиплоидных клеток. Нередко темпы деления этих клеток опережают темпы деления нормальных диплоидных клеток (2n). В этом случае быстро делящаяся линия полиплоидных клеток образует злокачественную опухоль. Если она не будет удалена или разрушена, то за счет быстрого деления полиплоидные клетки вытеснят нормальные. Так развиваются многие формы рака. Разрушение митотического веретена может быть вызвано радиацией, действием ряда химических веществ — мутагенов.

Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма. Пример: синдром Дауна у человека — трисомия по 21-й паре, всего в клетке 47 хромосом. Мутации могут быть получены искусственно с помощью радиации, рентгеновских лучей, ультрафиолета, химическими агентами, тепловым воздействием.

По отношению к возможности наследования:

1. Генеративные – происходят в половых клетках, наследуются.

2. Соматические – происходят в соматических клетках, не наследуются.

По локализации в клетке:

1. Ядерные – мутация возникла в генетическом материале клетки — ядре, нуклеотиде (в случае прокариот);

2. Цитоплазматические – мутация возникла в цитоплазме, причем они появляются в составе цитоплазматических ДНК-содержащих структур: хлоропластов, митохондрий, плазмид.

35. Спонтанный и индуцированный мутационный процесс. Понятие о мутациях и механизмах действия. Мутационная теория Корпинского и Х. Де Фриза.

Мутагенез – процесс возникновения мутаций.

Спонтанный (естественный) — мутации, которые возникают в естественных условиях вследствие воздействия на генетический материал живых организмов мутагенных факторов окружающей среды, таких как ультрафиолет, радиация, химические мутагены (не зависит от человека).

Индуцированный (искусственный) — возникновение наследственных изменений под влиянием специального воздействия мутагенных факторов внешней и внутренней среды (специально вызваны человеком).

Мутагены – факторы, вызывающие мутацию:

1. Физические (радиация, излучение, температуры);

2. Химические (спирты, фенолы);

3. Биологические (вирусы).

Последовательность событий, приводящая к мутации (внутри хромосомы) выглядит следующим образом. Происходит повреждение ДНК. Если повреждение ДНК не было корректно репарировано, оно приведет к мутации. В случае если повреждение произошло в незначащем (интрон) фрагменте ДНК, или если повреждение произошло в значащем фрагменте (экзон) и, вследствие вырожденности генетического кода не произошло нарушения, то мутации образуются, но их биологические последствия будут незначительными или могут не проявиться.

Мутагенез на уровне генома также может быть связан с инверсиями, делециями, транслокациями, полиплоидией, и анеуплоидией, удвоением, утроением (множественной дупликацией) и т. д. некоторых хромосом.

В настоящее время существует несколько подходов, использующихся для объяснения природы и механизмов образования точечных мутаций. В рамках общепринятой, полимеразной модели считается, что единственной причиной образования мутаций замены оснований являются спорадические ошибки ДНК-полимераз. В настоящее время такая точка зрения является общепринятой.

Уотсон и Крик предложили таутомерную модель спонтанного мутагенеза. Они объяснили появление спонтанных мутаций замены оснований тем, что при соприкосновении молекулы ДНК с молекулами воды могут изменяться таутомерные состояния оснований ДНК.

Мутационная теория составляет одну из основ генетики. Она зародилась вскоре после открытия законов Г. Менделя в трудах Г. Де Фриза (1901-1903). Еще раньше к представлениям о скачкообразном изменении наследственных свойств пришел русский ботаник С.И. Коржинский (1899) в своем труде «Гетерогенезис и эволюция». Справедливо говорить о мутационной теории Коржинского — Де Фриза, посвятившего большую часть жизни изучению проблемы мутационной изменчивости растений. На первых порах мутационная теория всецело сосредоточилась на фенотипическом проявлении наследственных изменений, практически не занимаясь механизмом их проявления. В соответствии с определением Г. Де Фриза мутация представляет собой явление скачкообразного, прерывистого изменения наследственного признака. До сих пор, несмотря на многочисленные попытки, не существует краткого определения мутации, лучшего, чем дал Г. Де Фриз, хотя и оно не свободно от недостатков. Оба ошибочно полагали, что мутации могут давать новые виды, минуя естественный отбор.

Основные положения мутационной теории Коржинского — Х. Де Фриза:

1. Мутации возникают внезапно

2. Новые формы устойчивы

3. Мутации являются качественными изменениями

4. Могут быть полезными и вредными

5. Выявление мутаций зависит от числа проанализированных особей

6. Одни и те же мутации возникают повторно

Дата публикования: 2015-02-03; Прочитано: 5820 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Мутационная изменчивость – изменчивость, вызванная возникновением мутации. Мутации – наследственные изменения признака, органа или свойства, обусловленные изменениями в строении хромосом.

Классификации мутаций:

По фенотипу:

1. Морфологические – изменяется характер роста и изменение органов. К морфологическим относятся мутации, ведущие к видимым изменениям фенотипа. Например, рецессивная мутация по гену white у дрозофилы в гомозиготном состоянии обусловливает белую окраску глаз, в то время как доминантная аллель гена дикого типа контролирует красную окраску глаз, присущую мухам из природных популяций.

2. Физиологические – повышается (понижается) жизнеспособность. К физиологическим относятся мутации, влияющие на жизнедеятельность организмов, их развитие, ведущие к нарушению таких процессов, как кровообращение, дыхание, умственная деятельность у человека, поведенческие реакции и т.п. Например, гемофилия — наследственное заболевание, связанное с нарушением процесса свёртывания крови.

Особенности мутационной изменчивости. Виды мутаций

Биохимические – тормозят или изменяют синтез определенных химических веществ в организме. Биохимические мутации представляют собой обширную группу, объединяющую все случаи изменения активности ферментов от их полного выключения до включения в норме неактивных метаболических путей. Примером могут служить многочисленные мутации к ауксотрофности у микроорганизмов, носители которых в отличие от организмов дикого типа – прототрофов — не способны самостоятельно синтезировать необходимые для жизнедеятельности вещества — аминокислоты, витамины, предшественники нуклеиновых кислот и т.д. К биохимическим относятся и различные мутации, нарушающие синтез ферментов, участвующих в репликации ДНК, репараций ее повреждений, транскрипции и трансляции генетического материала.

По генотипу:

1. Генные – изменение структуры молекулы ДНК на участке определенного гена, кодирующего синтез соответствующей белковой молекулы. Результатом генной мутации у человека являются такие заболевания, как серповидно-клеточная анемия, дальтонизм, гемофилия. Вследствие генной мутации возникают новые аллели генов, что имеет значение для эволюционного процесса.

2. Хромосомные – изменение структуры хромосом, связанное с разрывом хромосом (при воздействии на ядро радиации или химических веществ).

3. Геномные – это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом. Разные виды геномных мутаций называют гетероплоидией и полиплоидией.

Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии — кратного изменения числа хромосом. У полиплоидных организмов гаплоидный набор хромосом n в клетках повторяется не два (2n), как у диплоидов, а значительно большее число раз (3n, 4п, 5п и до 12n). Полиплоидия — следствие нарушения хода митоза или мейоза: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки. В результате возникают гаметы с числом хромосом 2n. При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом. Если геномная мутация происходит не в половых, а в соматических клетках, то в организме возникают клоны (линии) полиплоидных клеток. Нередко темпы деления этих клеток опережают темпы деления нормальных диплоидных клеток (2n). В этом случае быстро делящаяся линия полиплоидных клеток образует злокачественную опухоль. Если она не будет удалена или разрушена, то за счет быстрого деления полиплоидные клетки вытеснят нормальные. Так развиваются многие формы рака. Разрушение митотического веретена может быть вызвано радиацией, действием ряда химических веществ — мутагенов.

Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма. Пример: синдром Дауна у человека — трисомия по 21-й паре, всего в клетке 47 хромосом. Мутации могут быть получены искусственно с помощью радиации, рентгеновских лучей, ультрафиолета, химическими агентами, тепловым воздействием.

По отношению к возможности наследования:

1. Генеративные – происходят в половых клетках, наследуются.

2. Соматические – происходят в соматических клетках, не наследуются.

По локализации в клетке:

1. Ядерные – мутация возникла в генетическом материале клетки — ядре, нуклеотиде (в случае прокариот);

2. Цитоплазматические – мутация возникла в цитоплазме, причем они появляются в составе цитоплазматических ДНК-содержащих структур: хлоропластов, митохондрий, плазмид.

35. Спонтанный и индуцированный мутационный процесс. Понятие о мутациях и механизмах действия. Мутационная теория Корпинского и Х. Де Фриза.

Мутагенез – процесс возникновения мутаций.

Спонтанный (естественный) — мутации, которые возникают в естественных условиях вследствие воздействия на генетический материал живых организмов мутагенных факторов окружающей среды, таких как ультрафиолет, радиация, химические мутагены (не зависит от человека).

Индуцированный (искусственный) — возникновение наследственных изменений под влиянием специального воздействия мутагенных факторов внешней и внутренней среды (специально вызваны человеком).

Мутагены – факторы, вызывающие мутацию:

1. Физические (радиация, излучение, температуры);

2. Химические (спирты, фенолы);

3. Биологические (вирусы).

Последовательность событий, приводящая к мутации (внутри хромосомы) выглядит следующим образом. Происходит повреждение ДНК. Если повреждение ДНК не было корректно репарировано, оно приведет к мутации. В случае если повреждение произошло в незначащем (интрон) фрагменте ДНК, или если повреждение произошло в значащем фрагменте (экзон) и, вследствие вырожденности генетического кода не произошло нарушения, то мутации образуются, но их биологические последствия будут незначительными или могут не проявиться.

Мутагенез на уровне генома также может быть связан с инверсиями, делециями, транслокациями, полиплоидией, и анеуплоидией, удвоением, утроением (множественной дупликацией) и т. д. некоторых хромосом.

В настоящее время существует несколько подходов, использующихся для объяснения природы и механизмов образования точечных мутаций. В рамках общепринятой, полимеразной модели считается, что единственной причиной образования мутаций замены оснований являются спорадические ошибки ДНК-полимераз. В настоящее время такая точка зрения является общепринятой.

Уотсон и Крик предложили таутомерную модель спонтанного мутагенеза. Они объяснили появление спонтанных мутаций замены оснований тем, что при соприкосновении молекулы ДНК с молекулами воды могут изменяться таутомерные состояния оснований ДНК.

Мутационная теория составляет одну из основ генетики. Она зародилась вскоре после открытия законов Г. Менделя в трудах Г. Де Фриза (1901-1903). Еще раньше к представлениям о скачкообразном изменении наследственных свойств пришел русский ботаник С.И. Коржинский (1899) в своем труде «Гетерогенезис и эволюция». Справедливо говорить о мутационной теории Коржинского — Де Фриза, посвятившего большую часть жизни изучению проблемы мутационной изменчивости растений. На первых порах мутационная теория всецело сосредоточилась на фенотипическом проявлении наследственных изменений, практически не занимаясь механизмом их проявления. В соответствии с определением Г. Де Фриза мутация представляет собой явление скачкообразного, прерывистого изменения наследственного признака. До сих пор, несмотря на многочисленные попытки, не существует краткого определения мутации, лучшего, чем дал Г. Де Фриз, хотя и оно не свободно от недостатков. Оба ошибочно полагали, что мутации могут давать новые виды, минуя естественный отбор.

Основные положения мутационной теории Коржинского — Х. Де Фриза:

1. Мутации возникают внезапно

2. Новые формы устойчивы

3. Мутации являются качественными изменениями

4. Могут быть полезными и вредными

5. Выявление мутаций зависит от числа проанализированных особей

6. Одни и те же мутации возникают повторно

Дата публикования: 2015-02-03; Прочитано: 5818 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Мутационная изменчивость. Способы классификации мутаций

Мутационная изменчивость

Мутационной называется изменчивость, вызванная возникновением мутации. Мутации — это наследуемые изменения генетического материала, приводящие к изменению тех или иных признаков организма.

Основные положения мутационной теории разработаны Г. Де Фризом в 1901-1903 гг. и сводятся к следующему:

  • мутации возникают внезапно как дискретные изменения признаков;
  • новые формы устойчивы;
  • в отличие от ненаследственных изменений мутации не образуют непрерывных рядов. Они представляют собой качественные изменения;
  • мутации проявляются по-разному и могут быть как полезными, так и вредными;
  • вероятность обнаружения мутаций зависит от числа исследованных особей;
  • сходные мутации могут возникать повторно;
  • мутации ненаправленны (спонтанны), т. е. мутировать может любой участок хромосомы, вызывая изменения как незначительных, так и жизненно важных признаков.

По характеру изменения генома различают несколько типов мутаций — геномные, хромосомные и генные.

Геномные мутации (анеуплоидия и полиплоидия) — это изменение числа хромосом в геноме клетки (подробнее тут).

Хромосомные мутации, или хромосомные перестройки, выражаются в изменении структуры хромосом, которые можно выявить и изучить под световым микроскопом. Известны перестройки разных типов (нормальная хромосома — ABCDEFG):

  • нехватки, или дефишенси, — это потеря концевых участков хромосомы;
  • делеции — выпадение участка хромосомы в средней ее части (ABEFG);
  • дупликации — двух- или многократное повторение набора генов, локализованных в определенном участке хромосомы (ABCDECDEFG);
  • инверсии — поворот участка хромосомы на 180° (ABEDCFG);
  • транслокации — перенос участка к другому концу той же хромосомы либо к другой, негомологичной хромосоме (ABFGCDE).

При дефишенси, делениях и дупликациях изменяется количество генетического материала хромосом. Степень фенотипического изменения зависит от того, насколько велики соответствующие участки хромосом и содержат ли они важные гены. Примеры хромосомных перестроек известны у многих организмов, включая человека. Тяжелое наследственное заболевание синдром «кошачьего крика» (назван так по характеру звуков, издаваемых больными младенцами) обусловлено гетерозиготностью по дефишенси в 5-й хромосоме. Этот синдром сопровождается умственной отсталостью. Обычно дети с таким синдромом рано умирают.

Дупликации играют существенную роль в эволюции генома, поскольку могут служить материалом для возникновения новых генов, так как в каждом из двух ранее одинаковых участков могут происходить различные мутационные процессы.

При инверсиях и транслокациях общее количество генетического материала остается прежним, изменяется только его расположение. Такие мутации тоже играют значительную роль в эволюции, так как скрещивание мутантов с исходными формами затруднено, а их гибриды F1 чаще всего стерильны. Поэтому здесь возможно только скрещивание исходных форм между собой. Если у таких мутантов окажется благоприятный фенотип, они могут стать исходными формами для возникновения новых видов. У человека все указанные мутации приводят к патологическим состояниям.

Генные, или точковые, мутации — результат изменения нуклеотидной последовательности в молекуле ДНК. Возникшее изменение последовательности нуклеотидов в данном гене воспроизводится при транскрипции в структуре иРНК и приводит к изменению последовательности аминокислот в полипептидной цепи, образующейся в результате трансляции на рибосомах. Существуют разные типы генных мутаций, связанных с добавлением, выпадением или перестановкой нуклеотидов в гене. Это дупликации, вставки лишней пары нуклеотидов, делеции (выпадение пары нуклеотидов), инверсии или замены пар нуклеотидов (АТ ↔ ГЦ; АТ ↔ ЦГ или АТ ↔ ТА).

Эффекты генных мутаций чрезвычайно разнообразны. Большая часть из них фенотипически не проявляется (поскольку они рецессивны), однако известен ряд случаев, когда изменение лишь одного основания в определенном гене оказывает глубокое влияние на фенотип. Одним из примеров служит серповидно-клеточная анемия — заболевание, вызываемое у человека заменой нуклеотидов в одном из генов, ответственных за синтез гемоглобина. Это приводит к тому, что в крови эритроциты с таким гемоглобином деформируются (из округлых становятся серповидными) и быстро разрушаются. При этом развивается острая анемия и снижается количество кислорода, переносимого кровью. Анемия вызывает физическую слабость, может привести к нарушениям деятельности сердца и почек и к ранней смерти людей, гомозиготных по мутантному аллелю.

Генные мутации возникают под воздействием ультрафиолетовых лучей, ионизирующего излучения, химических мутагенов и других факторов. Особенно отрицательно сказывается фон ионизирующей радиации нашей планеты. Даже небольшое повышение естественного фона радиации (на 1/3), например в результате испытаний ядерного оружия, может привести к появлению в каждом поколении дополнительно 20 млн человек с тяжелыми наследственными нарушениями. Нетрудно представить себе, какую опасность не только для населения Украины, Беларуси и России, но и для всего человечества представляют такие события, как авария на Чернобыльской АЭС.

Читать далее

При хромосомных мутациях, также как при генных, происходят перестройки внутри хромосом.

Мутационная изменчивость

Однако первые в отличие от вторых затрагивают существенные части хромосом.

Хромосомные мутации могут быть внутрихромосомными перестройками (изменяется структура одной хромосомы), а также межхромосомными (изменяются две хромосомы). Механизм перестройки может быть различным. Выделяют следующие виды хромосомных мутаций:

  • Делеция — утрата части хромосомы. Дефишенси — утрата концевого участка.

  • Дупликация — удвоение части хромосомы. Амплификация — многократное повторение.

  • Инсерция — вставка хромосомного участка.

  • Инверсия — поворот участка хромосомы на 180°. Перицентрическая инверсия — поворот участка, содержащего центромеру; парацентрическая — не содержащего центромеру.

  • Транслокация — перенос участка с одной хромосомы на другую. В частности реципрокная транслокация — обмен участками между негомологичными хромосомами; робертсоновская транслокация — соединение двух акроцентрических хромосом, в результате чего образуется одна метацентрическая (равноплечая) или субметацентрическая.

Если дефишенси происходит на обоих концах хромосомы, то это может привести к образованию кольцевой хромосомы.

В результате хромосомных мутаций могут возникать хромосомы с двумя центромера или не содержащие ни одной. Хромосомы без ценромер называются ацентрическими фрагментами и обычно теряются при делении клетки. Хромосомы с двумя центромерами называются дицентрическими (дицентриками). В анафазе они формируют так называемые мосты и разрываются. В последствии в клетке они образуют хроматиновые тельца (микроядра).

Если в результате хромосомной мутации не произошло добавления или потери генетического материала, то такие перестройки называются сбалансированными и обычно не приводят к каким-либо последствиям. В результате несбалансированной перестройки происходит добавление или потеря генетического материала, и организмы могут иметь выраженные отклонения.

При инверсиях порядок генов в участке хромосомы меняется на обратный. Фенотипически подобная мутация обычно не проявляется. Однако при мейозе в результате кроссинговера могут образовываться гаметы с несбалансированным генетическим материалом.

Хромосомные мутации возникают как в половых, так и соматических клетках. В первом случае чаще всего приводят к врожденным заболеваниям, потере фертильности. Хромосомные перестройки в соматических клетках могут привести к онкологическим заболеваниям. Удачные для организма хромосомные мутации редки, но играют важную роль в эволюционном процессе, приводят к образованию новых видов.

Хромосомные мутации возникают из-за возникновения в клетках двунитевых разрывов ДНК, которые не были нормально восстановлены. Такие разрывы происходят как спонтанно, так и под действием мутагенов (например, ионизирующего излучения).

Мутационная изменчивость – изменчивость, вызванная возникновением мутации. Мутации – наследственные изменения признака, органа или свойства, обусловленные изменениями в строении хромосом.

Классификации мутаций:

По фенотипу:

1. Морфологические – изменяется характер роста и изменение органов. К морфологическим относятся мутации, ведущие к видимым изменениям фенотипа. Например, рецессивная мутация по гену white у дрозофилы в гомозиготном состоянии обусловливает белую окраску глаз, в то время как доминантная аллель гена дикого типа контролирует красную окраску глаз, присущую мухам из природных популяций.

2. Физиологические – повышается (понижается) жизнеспособность. К физиологическим относятся мутации, влияющие на жизнедеятельность организмов, их развитие, ведущие к нарушению таких процессов, как кровообращение, дыхание, умственная деятельность у человека, поведенческие реакции и т.п. Например, гемофилия — наследственное заболевание, связанное с нарушением процесса свёртывания крови.

3. Биохимические – тормозят или изменяют синтез определенных химических веществ в организме. Биохимические мутации представляют собой обширную группу, объединяющую все случаи изменения активности ферментов от их полного выключения до включения в норме неактивных метаболических путей. Примером могут служить многочисленные мутации к ауксотрофности у микроорганизмов, носители которых в отличие от организмов дикого типа – прототрофов — не способны самостоятельно синтезировать необходимые для жизнедеятельности вещества — аминокислоты, витамины, предшественники нуклеиновых кислот и т.д. К биохимическим относятся и различные мутации, нарушающие синтез ферментов, участвующих в репликации ДНК, репараций ее повреждений, транскрипции и трансляции генетического материала.

По генотипу:

1. Генные – изменение структуры молекулы ДНК на участке определенного гена, кодирующего синтез соответствующей белковой молекулы. Результатом генной мутации у человека являются такие заболевания, как серповидно-клеточная анемия, дальтонизм, гемофилия. Вследствие генной мутации возникают новые аллели генов, что имеет значение для эволюционного процесса.

2. Хромосомные – изменение структуры хромосом, связанное с разрывом хромосом (при воздействии на ядро радиации или химических веществ).

3. Геномные – это мутации, которые приводят к добавлению либо утрате одной, нескольких или полного гаплоидного набора хромосом. Разные виды геномных мутаций называют гетероплоидией и полиплоидией.

Геномные мутации связаны с изменением числа хромосом. Например, у растений довольно часто обнаруживается явление полиплоидии — кратного изменения числа хромосом. У полиплоидных организмов гаплоидный набор хромосом n в клетках повторяется не два (2n), как у диплоидов, а значительно большее число раз (3n, 4п, 5п и до 12n). Полиплоидия — следствие нарушения хода митоза или мейоза: при разрушении веретена деления удвоившиеся хромосомы не расходятся, а остаются внутри неразделившейся клетки. В результате возникают гаметы с числом хромосом 2n. При слиянии такой гаметы с нормальной (n) потомок будет иметь тройной набор хромосом. Если геномная мутация происходит не в половых, а в соматических клетках, то в организме возникают клоны (линии) полиплоидных клеток. Нередко темпы деления этих клеток опережают темпы деления нормальных диплоидных клеток (2n). В этом случае быстро делящаяся линия полиплоидных клеток образует злокачественную опухоль. Если она не будет удалена или разрушена, то за счет быстрого деления полиплоидные клетки вытеснят нормальные. Так развиваются многие формы рака. Разрушение митотического веретена может быть вызвано радиацией, действием ряда химических веществ — мутагенов.

Увеличение хромосом на одну-две у животных приводит к аномалиям развития или гибели организма. Пример: синдром Дауна у человека — трисомия по 21-й паре, всего в клетке 47 хромосом. Мутации могут быть получены искусственно с помощью радиации, рентгеновских лучей, ультрафиолета, химическими агентами, тепловым воздействием.

По отношению к возможности наследования:

1. Генеративные – происходят в половых клетках, наследуются.

2. Соматические – происходят в соматических клетках, не наследуются.

По локализации в клетке:

1. Ядерные – мутация возникла в генетическом материале клетки — ядре, нуклеотиде (в случае прокариот);

2. Цитоплазматические – мутация возникла в цитоплазме, причем они появляются в составе цитоплазматических ДНК-содержащих структур: хлоропластов, митохондрий, плазмид.

35. Спонтанный и индуцированный мутационный процесс. Понятие о мутациях и механизмах действия. Мутационная теория Корпинского и Х. Де Фриза.

Мутагенез – процесс возникновения мутаций.

Спонтанный (естественный) — мутации, которые возникают в естественных условиях вследствие воздействия на генетический материал живых организмов мутагенных факторов окружающей среды, таких как ультрафиолет, радиация, химические мутагены (не зависит от человека).

Индуцированный (искусственный) — возникновение наследственных изменений под влиянием специального воздействия мутагенных факторов внешней и внутренней среды (специально вызваны человеком).

Мутагены – факторы, вызывающие мутацию:

1. Физические (радиация, излучение, температуры);

2. Химические (спирты, фенолы);

3. Биологические (вирусы).

Последовательность событий, приводящая к мутации (внутри хромосомы) выглядит следующим образом. Происходит повреждение ДНК. Если повреждение ДНК не было корректно репарировано, оно приведет к мутации. В случае если повреждение произошло в незначащем (интрон) фрагменте ДНК, или если повреждение произошло в значащем фрагменте (экзон) и, вследствие вырожденности генетического кода не произошло нарушения, то мутации образуются, но их биологические последствия будут незначительными или могут не проявиться.

Мутагенез на уровне генома также может быть связан с инверсиями, делециями, транслокациями, полиплоидией, и анеуплоидией, удвоением, утроением (множественной дупликацией) и т. д. некоторых хромосом.

В настоящее время существует несколько подходов, использующихся для объяснения природы и механизмов образования точечных мутаций. В рамках общепринятой, полимеразной модели считается, что единственной причиной образования мутаций замены оснований являются спорадические ошибки ДНК-полимераз. В настоящее время такая точка зрения является общепринятой.

Уотсон и Крик предложили таутомерную модель спонтанного мутагенеза.

Особенности мутационной изменчивости. Виды мутаций

Они объяснили появление спонтанных мутаций замены оснований тем, что при соприкосновении молекулы ДНК с молекулами воды могут изменяться таутомерные состояния оснований ДНК.

Мутационная теория составляет одну из основ генетики. Она зародилась вскоре после открытия законов Г. Менделя в трудах Г. Де Фриза (1901-1903). Еще раньше к представлениям о скачкообразном изменении наследственных свойств пришел русский ботаник С.И. Коржинский (1899) в своем труде «Гетерогенезис и эволюция». Справедливо говорить о мутационной теории Коржинского — Де Фриза, посвятившего большую часть жизни изучению проблемы мутационной изменчивости растений. На первых порах мутационная теория всецело сосредоточилась на фенотипическом проявлении наследственных изменений, практически не занимаясь механизмом их проявления. В соответствии с определением Г. Де Фриза мутация представляет собой явление скачкообразного, прерывистого изменения наследственного признака. До сих пор, несмотря на многочисленные попытки, не существует краткого определения мутации, лучшего, чем дал Г. Де Фриз, хотя и оно не свободно от недостатков. Оба ошибочно полагали, что мутации могут давать новые виды, минуя естественный отбор.

Основные положения мутационной теории Коржинского — Х. Де Фриза:

1. Мутации возникают внезапно

2. Новые формы устойчивы

3. Мутации являются качественными изменениями

4. Могут быть полезными и вредными

5. Выявление мутаций зависит от числа проанализированных особей

6. Одни и те же мутации возникают повторно

Дата публикования: 2015-02-03; Прочитано: 5817 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Классификация мутаций

По причинам, вызвавшим мутации, их под­разделяют на спонтанные и индуцированные. Спонтанные (самопроизвольные)мутации происходят под действием есте­ственных мутагенных факторов внешней среды без вмеша­тельства человека, например наследственные болезни обмена веществ. Их причинами являются ошибки репликации и ре­парации ДНК, действие перекисей и альдегидов, образую­щихся в организме, различные виды естественных излучений. Индуцированные мутации — результат направленного воздей­ствия определенных мутагенных факторов. Впервые они бы­ли получены в 1925 г. Г.А. Надсоном и Г.С. Филипповым при облучении грибов радием.

По мутировавшим клеткам мутации подразделя­ют на гаметические и соматические. Гаметические мутации (генеративные) происходят в половых клетках, проявляются у потомков, передаются по наследству при половом размноже­нии (гемофилия, фенилкетонурия). Соматические мутации происходят в соматических клетках, передаются по наследст­ву только при вегетативном размножении и проявляются у са­мой особи (разный цвет глаз у одного человека, белая прядь волос, опухоли).

По исходу для организма мутации бывают: отри­цательныелетальные, несовместимые с жизнью (напри­мер, отсутствие головного мозга) и полулетальные — снижающие жизнеспособность организма (например, бо­лезнь Дауна); нейтральные — существенно не влияющие на процессы жизнедеятельности (например, веснушки); положи­тельные — повышающие жизнеспособность (например, появ­ление четырехкамерного сердца в процессе эволюции хордо­вых животных).

Мутационная изменчивость

Последние возникают редко, но имеют большое значение для прогрессивной эволюции.

По изменениям генетического материала мутации подразделяют на геномные, хромосомные и генные.

Геномные мутации

Геномные мутации обусловлены изменениями числа хро­мосом. К ним относятся полиплоидия, гаплоидия и анеуплоидия. Аномалии числа хромосом могут быть вызваны разны­ми причинами. Наиболее часто геномные мутации являются следствием: нерасхождения хромосом, когда две или несколь­ко гомологичных хромосом остаются соединенными вместе и в анафазу отходят к одному полюсу вследствие разрушения нитей веретена деления; анафазного отставания, когда одна или несколько хромосом в процессе анафазного движения от­стают от других. Реже причиной геномных мутаций является полиплоидизация.

Полиплоидия — это кратное гаплоидному увеличение числа хромосом в соматических клетках (3n, 4n, 5n,..). Поли­плоидия, как правило, используется в селекции растений и приводит к повышению урожайности. У млекопитающих и человека это летальные мутации.

Гаплоидия (1n) — одинарный набор хромосом в сома­тических клетках, например у трутней пчел. Жизнеспособ­ность гаплоидов снижается, так как в этом случае проявляются все рецессивные гены, содержащиеся в единственном чис­ле. Для млекопитающих и человека это летальная мутация.

Анеуплоидия — некратное гаплоидному уменьшение или увеличение числа хромосом (2n±1, 2n±2 и т. д.). Сущест­вует несколько разновидностей анеуплоидии:

трисомия — три гомологичные хромосомы в кариотипе, например при синдроме Дауна (трисомия по 21-й хромо­соме);

моносомия — в наборе одна из пары гомологичных хромо­сом, например при синдроме Шерешевского — Тернера (моно­сомия X). Моносомии по первым крупным парам хромосом являются для человека летальными мутациями. Иногда встре­чаются двойные, тройные (по двум и трем разным хромосо­мам) моно- и трисомии, тетрасомии и др.;

нулисомия — отсутствие пары хромосом (летальная мута­ция); у человека неизвестна.

Геномные мутации всегда проявляются фенотипйчески и легко обнаруживаются цитогенетическими методами.

Дата добавления: 2016-11-26; просмотров: 1400;

Похожие статьи:

Оставьте комментарий