Множественный аллелизм

Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько.

Множественный аллелизм для генов, контролирующих системы несовместимости, выступает как фактор отбора, препятствующий образованию зигот и организмов определенных зигот. Примером множественного аллелизма является серия множественных аллелей s1, s2, s3, обеспечивающих самостерильность многих растений. Двенадцать различных состояний одного локуса у дрозофилы, обусловливающих разнообразие окраски глаз (w — белые, we — эозиновые, wa — абрикосовые, wch — вишневые, wm — пятнистые и т. д.); серия множественных аллелей окраски шерсти у кроликов («сплошная», гималайская, альбинос и т. д.); аллели IA, Iв, I°, определяющие группы крови у человека, и т. д. Серия множественных аллелей — результат мутирования одного гена.

Обусловленность признака серий множественных аллелей не меняет соотношения фенотипов в гибридном потомстве. Во всех случаях в генотипе присутствует только одна пара аллелей, их взаимодействие и определяет развитие признака.

Источник

Множественные аллели и полигенное наследование признаков человека

Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько. Возникают в результате разных мутаций одного локуса. Гены множественных аллелей взаимодействуют между собой различным образом.

В популяциях как гаплоидных, так и диплоидных организмов обычно существует множество аллелей, для каждого гена. Это следует из сложной структуры гена — замена любого из нуклеотидов или иные мутации приводят к появлению новых аллелей. Видимо, лишь в очень редких случаях любая мутация столь сильно влияет на работу гена, а ген оказывается столь важным, что все его мутации приводят к гибели носителей. Так, для хорошо изученных у человека глобиновых генов известно несколько сотен аллелей, лишь около десятка из них приводит к серьёзным патологиям.

Множественные аллели. Анализирующее скрещивание
1. 1, Какое доминирование называется неполным?
2. Что такое фенотип? Генотип?
Множественный аллелизм. Только через много лет после классических исследований Г. Менделя стало ясно, что понятия «доминантный ген» и «рецессивный ген» являются относительными. У гена какого-либо признака могут быть и другие «состояния», которые нельзя назвать ни доминантными, ни рецессивными. Такое явление, когда в результате мутаций возникли не два, а три или более состояний какого-либо гена, называют множественным аллелизмом.
Кодоминирование. В любой соматической клетке всегда содержатся только два аллельных гена — от отца и от матери. При множественном аллелизме «виды» этих генов у разных особей одной популяции будут различными — кому какие достанутся от родителей. Например, группа крови у человека определяется геном, который может быть представлен тремя аллелями — 0, А и В. При этом А и В — доминантные аллели, а 0 — рецессивная. Таким образом, человек может наследовать эти аллели в следующих комбинациях: 00 — первая группа крови, АА и АО — вторая, ВВ и ВО — третья, АВ (когда два доминантных гена определяют признак вместе, не подавляя друг друга) — четвертая группа крови. Такой вид взаимодействия аллельных генов, когда они вместе определяют какой-либо признак, получил название кодоминирования.
Неполное доминирование. Иногда один аллельный ген не до конца подавляет действие второго. При этом возникают промежуточные признаки, и признак у гомозиготной по доминантному гену особи будет не таким, как у гетерозиготной особи. Это явление получило название неполного доминирования. Поясним его на примере.

При скрещивании растения ночной красавицы, имеющего пурпурные цветки (АА), с растением, имеющим белые цветки (аа), все растения — гибриды первого поколения будут иметь розовые цветки (рис. 58). При скрещивании двух особей ночной красавицы из первого поколения во втором поколении происходит расщепление, но не 3 : 1 (как при полном доминировании), а в другом соотношении — 1:2:1, т. е. 1/4 растений с белыми цветками (аа), 2/4 —- с розовыми (Аа) и 1/4 — с пурпурными (АА) (рис, 58),
Явление неполного доминирования встречается часто, например при наследовании цвета шерсти крупного рогатого скота, строения перьев птиц. Встречается это явление и у человека при наследовании брахидактилии — укорочения фаланг пальцев. У здорового человека имеется два доминантных гена ВВ, и развитие скелета происходит нормально. У гетерозигот (Вb) наблюдается укорочение фаланг пальцев, а у рецессивных гомозигот (bb) проявляются множественные нарушения в развитии скелета, и такие люди погибают еще в раннем детстве. Таким образом, ген В не полностью подавляет действие гена b , и у гетерозигот вследствие этого развивается брахидактилия,
Сверхдоминирование. Изредка при взаимодействии двух аллельных генов наблюдается явление сверхдоминирования. При сверхдоминировании доминантный признак сильнее проявляется у гетерозигот (Аа), чем у доминантных гомозигот (АА). В частности, были выведены сорта томатов с набором аллельных генов Аа, который определяет их более высокую урожайность по сравнению с особями, имеющими набор АА.
До сих пор мы рассматривали случай наследования одного признака, определяемого одним геном. Но любой организм имеет громадное количество признаков, причем это не только внешние, видимые особенности, но и признаки биохимические (строение молекул, активность ферментов, концентрация веществ в тканях, крови и т. д.), анатомические (форма и размер внутренних органов) и т. п. Любой признак, каким бы простым он ни казался, определяется множеством физиологических и биохимических процессов, каждый из которых, в свою очередь, зависит от действия ферментов.
Совокупность всех внешних и внутренних признаков и свойств организма называют фенотипом.
Совокупность всех генов организма называют генотипом. Фенотипические признаки, определяемые теми или иными генами, в различных условиях существования проявляются по-разному.
По фенотипу не всегда можно определить, какие гены содержит данная особь. Например, у растения гороха, имеющего желтые семена, генотип может быть как АА, так иАа. А вот рецессивный признак — зеленый цвет семян — проявляется только у гомозиготных растений с генотипом аа. Иными словами, всегда можно определить генотип особи с рецессивным признаком.
Анализирующее скрещивание. Для установления генотипа особей, которые не различаются по фенотипу, используют так называемое анализирующее скрещивание. При этом особь, генотип которой нужно установить, скрещивают с особью, гомозиготной по рецессивному гену (аа).

Множественный аллелизм

Например, для того чтобы выяснить, какие из растений гороха с желтыми семенами имеют генотип АА, а какие —Аа, их следует скрестить с растением с зелеными семенами (аа). Если потомство будет иметь только желтые горошины, значит, исследуемое растение было доминантной гомозиготой ( АА). Если же в потомстве наблюдается ращепление на растения с желтыми и зелеными горошинами в соотношении 1: 1, то изучаемое растение было гетерозиготно ( Аа )
Генофонд. Итак, благодаря множественному аллелизму каждый вид имеет целый набор аллельных генов, хотя каждая особь благодаря диплоидности содержит в каждой аллели только два гена. Совокупность всех вариантов всех генов, входящих в состав генотипов особей какого-либо вида, получила название генофонда вида. Можно также говорить о генофонде популяции или иной группы особей вида.
Множественный аллелизм. Кодоминирование. Неполное доминирование. Сверхдоминирование. Фенотип. Генотип. Анализирующее скрещивание. Генофонд вида.

Полигенное наследование, также известное как "множественное" или мультифакторное, относится к наследованию характеристик фенотипа, за которые отвечают два или более гена, или взаимодействие последних с окружающей средой, или и то, и другое. В отличие от моногенных признаков, полигенные характеристики не следуют букве законов Менделя. Вместо этого, их фенотипические признаки обычно варьируют с равномерным уклоном, изображаемым при помощи кривой нормального распределения [1].

Примером полигенных признаков может служить цвет человеческой кожи. За определение естественного цвета кожи индивида отвечают многие гены, так что изменение лишь одного из них едва ли приведет к существенным переменам в цвете. Многие наследственные заболевания имеют полигенную природу; к таковым относятся аутизм, рак, диабет и другие. Большинство фенотипических характеристик являются результатом взаимодействия множества генов.

Примеры заболеваний мультифакторной этиологии:

Врожденные пороки

До сих пор при изложении материала мы исходили из положения, что один и тот же локус гомологичных хромосом представлен двумя аллелями: A и a, В и b, С и с и т. д.

Эти два состояния локуса возникают при прямом и обратном мутировании. На самом деле один и тот же ген может изменяться в несколько состояний; иногда таких состояний бывает несколько десятков и даже сотен. Ген А может мутировать в состояние а1, а2, а3, …, аn или ген В в другом локусе — в состояние b1, b2, b3, …, bn и т. д. Мутации одного и того же локуса называют серией множественных аллелей, а само явление — множественным аллелизмом.

Возникновение серии множественных аллелей схематически иллюстрируется на рисунке.

Схема возникновения серии множественных аллелей

Изучение мутаций серии множественных аллелей показало, что:

  1. любая аллель такой серии может возникать мутационно непосредственно от аллели дикого типа или любого другого члена данной серии;
  2. любая аллель серии может мутировать в другую как в прямом, так и в обратном направлении;
  3. каждый из членов серии, по-видимому, имеет свою характерную частоту мутирования;
  4. серии множественных аллелей в разных локусах могут иметь различное число членов.

Наследование членов серии множественных аллелей подчиняется менделевским закономерностям. При этом имеет место следующее:

1) серия множественных аллелей у каждого диплоидного организма может быть представлена одновременно только двумя любыми ее членами, например:

Аа1, Аа2, а1а2, а1а3, а2а2 и т. д.;

2) каждый из членов серии может полностью или не полностью доминировать над другим ее членом, например: A > a1 > a2 > a3 и т.д.

3) члены одной серии действуют на один и тот же признак; одновременно они могут иметь множественный эффект.

Рассмотрим более подробно наследование серии аллелей одного гена, а также приведем факты множественного аллелизма.

У грызунов, в частности у кроликов, существует серия множественных аллелей по окраске шерсти: черный, шиншилла, гималайский горностаевый; — неполный альбинос и полный альбинос (белый кролик с красными глазами). При скрещивании черных кроликов с гималайскими, имеющими на фоне общей белой окраски шерсти черные кончики ушей, лап, хвоста и морды, в F1 все потомство оказывается черным. Во втором поколении наблюдается расщепление в отношении 3 черных к 1 гималайскому. Скрещивание гималайского кролика с альбиносом дает гибридов F1 с признаками первого родителя, а в F2 имеется расщепление 3 гималайских на 1 альбиноса.

Схема наследования серии множественных аллелей

Следовательно, каждая пара членов данной серии ведет себя в расщеплении как одна аллельная пара. Если бы члены серии были неаллельными, то должно было происходить расщепление, соответствующее дигибридному или полигибридному скрещиванию. Однако этого не наблюдается. При проверке других мутаций в этой серии во всех случаях имеет место моногибридное расщепление.

На основании подобного генетического анализа предположили, что ген альбинизма может иметь несколько состояний. Обычно такую серию обозначают по названию признака, впервые найденного, или по общему характеру действия данного локуса, способного мутировать в разные состояния. Так, например, серия множественных аллелей гималайского альбинизма у кролика обозначается: буквой С — черный, а члены ряда в гомозиготном состоянии cch cch — шиншилловая окраска, chch — гималайский альбинос, саса — полный альбинос.

В отличие от генов, для которых известны только два состояния, сочетание двух разных членов серии множественных аллелей в гетерозиготе называют компаундом.

В связи с тем, что у диплоидного организма могут присутствовать одновременно только два члена серии множественных аллелей, представляет интерес выяснить, как они ведут себя в разных сочетаниях. Члены ряда серии аллелей не только по-разному определяют развитие признаков, но и вступают в разные доминантно-рецессивные отношения друг с другом, о чем было упомянуто выше. Нередко доминирование при этом неполное. Так, например, компаунд по шиншилловой окраске и гималайской или по шиншилловой и альбинизму cchch или cchca дает светло-серую окраску, типичную для шиншиллы, а компаунд с са —фенотип гималайского кролика.

Альбинизм оказывается рецессивным по отношению ко всем членам данной серии. Аллель альбинизма по ранее приведенной классификации Мёллера является аморфной мутацией, а аллель гималайской окраски — гипоморфной мутацией.

Градуальность (промежуточность) проявления членов серий множественных аллелей в компаунде наблюдается в тех случаях, когда мутантные гены относятся к разным типам действия: аморфный — гипоморфный и т. д. У морской сцинки, например, так же, как и у кролика, имеется серия множественных аллелей по окраске шерсти. Окраска шерсти оказывается различной в зависимости от сочетания членов данной серии. С. Райт и его сотрудники изучили у морской свинки количество основного пигмента — меланина, обусловливающего у этого животного окраску шерсти. Серия аллелей окраски состоит из гена С и его мутантов: ck, cd, сr и сa.

Аллель С доминирует над всеми, а са, обусловливающая альбинизм, является рецессивной по отношению ко всем остальным членам данной серии, которые определяют промежуточную пигментацию шерсти. На основании колориметрического исследования экстрактов меланина из шерсти морских свинок разных компаундов данной серии удалось установить градуальное действие мутаций.

Число мутантных аллелей данного гена может быть весьма большим. Так, например, по гену белой окраски глаза (white) у дрозофилы известна серия аллелей из 12 членов. Все эти аллели в компаунде в определенной последовательности дают промежуточную окраску глаз и доминируют над аморфным геном w. Ниже приводятся сведения о фенотипических проявлениях аллелей (цвет глаз) этой серии и их символы:

У одного и того же вида растений или животных целый ряд локусов может быть представлен серией множественных аллелей. Такой ряд установлен у крупного рогатого скота, кроликов, мышей, морских свинок, дрозофилы, а также у кукурузы, табака, гороха и др. Серии множественных аллелей обнаружены и у человека. Распространенность этого явления среди животных, растений и микроорганизмов могла быть обусловлена несколькими причинами: множественный аллелизм увеличивает резерв мутационной изменчивости в эволюции, в силу чего он приобрел приспособительное значение.

Изучение множественного аллелизма имеет не только теоретическое значение для понимания природы наследственной изменчивости, но и чисто практическое. Так, у человека известны четыре группы крови: А, В, АВ и 0. Если взять кровь от человека группы АВ или А или В и перелить другому человеку, имеющему кровь группы 0, то последний может погибнуть. Причина этого заключается в следующем. Эритроциты группы АВ содержат два антигена: группа А — антиген А, группа В — антиген В, группа 0 не содержит антигенов А и В. Сыворотка крови этих четырех групп различается следующим образом: группа 0 имеет два антитела, обозначаемые как α и β; группа А содержит в сыворотке антитело β, группа В — антитело α, сыворотка группы АВ не имеет антител α и β. Взаимоотношение антигенов эритроцитов (А, В) антител сыворотки (α и β) всех четырех групп крови приведен в таблице.

Реакция агглютинации эритроцитов между различными группами крови

В ряде случаев группы крови оказываются несовместимыми. Происходит это потому, что антитело α агглютинирует эритроциты групп крови А и АВ, а антитело β — эритроциты групп крови В и АВ. Если в крови реципиента с группой А окажется антиген В, то наступит слипание эритроцитов донора; то же происходит, если в кровь реципиента группы В попадают антигены донора А или АВ.

Группы крови не изменяются в течение жизни человека. Причем их наследование осуществляется настолько четко, что это используется в судебной медицине для исключения отцовства и в некоторых других случаях. Для примера приведем ожидаемые и невозможные группы крови у потомков при различном сочетании групп крови родителей.

Группы крови потомков от браков людей с разными группами крови

Как показал А. Винер, в наследственном определении антигенов участвует серия множественных аллелей, состоящая по меньшей мере из трех членов: IА, IB, I0. Первые два члена серии определяют выработку антигенов, соответственно IА — антигена А, I0 — антигена В. Ни один из них не доминирует над другими. До недавнего времени считали, что I0 является рецессивной аллелью к первым двум аллелям, поэтому ее обозначают также i.

Ответы на экзаменационные билеты

Сочетание всех этих аллелей определяет соответствующие группы крови, а именно:

Гетерозиготы IАI0 и IBI0 не отличаются по фенотипу от гомозигот. В настоящее время генетические исследования групп крови, т. е. установление генов, определяющих антигенные различия, показывают, что каждая группа зависит от целого ряда аллелей однозначного действия (А1, А2, А3 или В1, В2, В3 и т. д.). Кроме того, некоторые авторы считают, что существуют люди с генотипами I0I0 (т. е. ii), имеющие 0 группу крови, эритроциты которых обладают антигенными свойствами и имеют соответствующие антитела.

Группы крови у крупного рогатого скота также определяются сериями множественных аллелей. Изучение наследственной детерминации групп крови составляет предмет исследования новой, чрезвычайно перспективной области генетики, называемой иммуногенетикой.

В настоящее время не совсем ясно, все ли локусы могут иметь серии множественных аллелей. Предполагалось, что последние обнаруживаются лишь для некоторых локусов хромосом. Но по мере исследования отдельных генов у наиболее изученных форм, в свете современных данных о строении гена, складывается впечатление, каждый локус может быть представлен серией множественных аллелей с большим или меньшим числом членов. Следует отметить, что у близких видов встречаются сходные серии аллелей (например, в пределах отряда грызунов и др.). Это говорит о гомологии наследственной изменчивости идентичных локусов хромосом у родственных видов.

Таким образом, исследование множественного аллелизма показывает, что ген как наследственная единица может мутировать в ряд состояний.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.

Вконтакте

Google+

Одноклассники

Множественный аллелизм

Множественный аллелизм — это существование в популяции более двух аллелей данного гена. В популяции оказываются не два аллельных гена, а несколько.

Множественный аллелизм для генов, контролирующих системы несовместимости, выступает как фактор отбора, препятствующий образованию зигот и организмов определенных зигот. Примером множественного аллелизма является серия множественных аллелей s1, s2, s3, обеспечивающих самостерильность многих растений. Двенадцать различных состояний одного локуса у дрозофилы, обусловливающих разнообразие окраски глаз (w — белые, we — эозиновые, wa — абрикосовые, wch — вишневые, wm — пятнистые и т. д.); серия множественных аллелей окраски шерсти у кроликов («сплошная», гималайская, альбинос и т. д.); аллели IA, Iв, I°, определяющие группы крови у человека, и т. д. Серия множественных аллелей — результат мутирования одного гена.

Обусловленность признака серий множественных аллелей не меняет соотношения фенотипов в гибридном потомстве. Во всех случаях в генотипе присутствует только одна пара аллелей, их взаимодействие и определяет развитие признака.

Явление множественного аллелизма определяет фенотипическую гетерогенность человеческих популяций, это одна из основ разнообразия генофонда человека. В основе этой множественности лежат генные мутации, изменяющие последовательность азотистых оснований молекулы ДНК в участке, соответствующем данному гену. Эти мутации могут быть нейтральными, полезными, или вредными. Последние являются причиной наследственных патологий, связанных с множественным аллелизмом. Например, известна мутация, изменяющая структуру одной из цепей белка гемоглобина за счет того, что код глутаминовой кислоты в концевом участке гена трансформируется в код аминокислоты валин. Эта замена становится причиной возникновения наследственной патологии — серповидноклеточной анемии. Явление сверхдоминирования связано с тем, что в ряде случаев доминантные гены в гетерозиготном состоянии проявляются сильнее, чем в гомозиготном. Это понятие коррелирует с эффектом гетерозиса и связано с такими сложными признаками, как жизнеспособность, общая продолжительность жизни и др. Таким образом, у человека, как и у остальных эукариот, известны все типы взаимодействия аллельных генов и большое количество менделирующих признаков, определяемых этими взаимодействиями.

Используя менделевские законы наследования, можно рассчитать вероятность рождения детей с теми или иным моделирующими признаками. Наиболее удобным методическим подходом к анализу наследования признаков в нескольких поколениях является генеалогический метод, основанный на построении родословных. Взаимодействие генов. До сих пор мы рассматривали только признаки, контролируемые моногенно. Однако на фенотипическое проявление одного гена обычно влияют другие гены.

Зачастую признаки формируются при участии нескольких генов, взаимодействие между которыми отражается в фенотипе. Примером сложного взаимодействия генов могут служить закономерности наследования системы резус-фактор: резус плюс (Rh+) и резус минус (Rh-). В 1939 г. при исследовании сыворотки крови женщины, родившей мертвый плод и имевшей в анамнезе переливание совместимой по АВО группе крови мужа были обнаружены особые антитела, сходные с получаемыми при иммунизации экспериментальных животных эритроцитами макаки — резус. Выявленные у больной антитела получили название резус-антител, а ее группа крови — резус-отрицательной. Группа крови резус-положительная определяется присутствием на поверхности эритроцитов особой группы антигенов, кодируемых структурными генами, несущими информацию о мембранных полипептидах.

Явление множественного аллелизма широко распространено в природе. Известны обширные серии множественных аллелей, определяющих тип совместимости при опылении у высших растений, при оплодотворении у грибов, детерминирующих окраску шерсти животных, глаз у дрозофилы, рисунка на листьях белого клевера, наконец, у растений, животных и микроорганизмов известно много примеров гак называемых аллозимов или аллельных изоэнзимов белковых молекул, различия между которыми определяются аллелями одного гена.

Во многих случаях попарные взаимодействия членов серии аллелей приводят к тому, что исследуемый признак проявляется иначе, чем у гомозиготных родительских форм.

В некоторых случаях механизм взаимодействия аллелей расшифрован.

Взаимодействие аллельных генов

Вернемся к примеру с красными и белыми дрожжами. Существует большое число красных аденинзависимых мутантов дрожжей. Большинство из них несет изменения одного и того же гена. Во всех случаях потребность в аденине и красная окраска колоний рецессивны по отношению к белой окраске и, соответственно, к отсутствию потребности в аденине.



7. Сущность анализирующего скрещивания.

Что такое возвратно-анализирующее скрещивание?

+скрещивание с родительской особью, гомозиготной по рецессивному признаку;

-скрещивание с особью, которая несет в генотипе доминантный ген;

-скрещивание с особью, которая несет в генотипе рецессивный ген;

-скрещивание с гетерозиготой;

-ни одно из названных определений.

Что такое множественные аллели?

-несколько неаллельных генов, определяющих развитие одного признака;

-два аллельных гена, определяющие развитие одного признака;

-несколько аллельных генов, определяющих развитие нескольких признаков;

+несколько аллельных генов, определяющих вариации одного признака;

-один ген, определяющий развитие нескольких признаков.

Особенности наследования множественных аллелей:

-все члены серии отвечают за развитие нескольких признаков;

-в гамете может присутствовать два и более аллелей из серии;

-пять аллельных генов могут отвечать за развитие лишь одного варианта признака;

+в генотипе диплоидного организма одновременно могут присутствовать только два аллеля из серии.

-ни один из вышеназванных типов.

Особенности наследования множественных аллелей:

+все члены серии отвечают за один и тот же признак;

-один член серии отвечает за развитие нескольких вариантов одного признака;

-в гамете может присутствовать два и более аллелей из серии;

-явление множественного аллелизма реализуется только на уровне одного организма;

-ни один из вышеназванных пунктов.

Особенности наследования множественных аллелей:

-в генотипе диплоидного организма ( в соматических клетках) могут присутствовать несколько ( больше двух) аллелей из серии;

-в гамете может присутствовать несколько аллелей из серии;

+в гамете может присутствовать лишь один аллель из серии;

-все члены серии отвечают за разные признаки;

-все члены серии отвечают за два признака.

Особенности наследования множественных аллелей:

+каждая аллель может полностью или неполностью доминировать над другими аллелями серии;

-разные аллели в разных сочетаниях дают проявление разных признаков;

-на популяционном уровне может быть не более десяти аллелей;

-на популяционном уровне может быть не более двадцати аллелей;

-ни один из вышеназванных ответов.

Пример множественного аллелизма:

-окраска горошин;

-фенилкетонурия;

+окраска шерсти у кролика;

-рост человека;

-яйценоскость у кур.

Присутствие в генотипе в одинаковой мере функционально активных двух аллелей одного гена характерно для:

+кодоминирования;

-сверхдоминирования;

-множественного аллелизма;

-плейотропии;

-пенетрантности.

При взаимодействии генов по типу кодоминирования:

-в фенотипе один ген полностью подавляет фенотипическое проявление другого гена;

-в фенотипе проявляется один из аллельных генов;

+в фенотипе одновременно проявляются оба аллельных гена;

-в фенотипе развивается промежуточный вариант признака;

-ни один из вышеназванных ответов.

При взаимодействии генов по типу полного доминирования:

-в фенотипе один ген не полностью подавляет проявление другого гена;

-в фенотипе проявляются оба аллельных гена;

-в фенотипе гены не проявляются в признак;

+в фенотипе проявляется один из аллельных генов;

-гетерозигота имеет преимущество над обоими типами гомозигот.

При взаимодействии генов по типу неполного доминирования:

-в фенотипе гены не проявляются в признак;

-один ген полностью подавляет фенотипическое проявление другого гена;

-в фенотипе оба гена проявляются в признак;

-в фенотипе гомозигота имеет преимущество над гетерозиготой;

+в фенотипе развивается промежуточный вариант признака.

При взаимодействии генов по типу сверхдоминирования:

+гетерозигота имеет отборное преимущество над гомозиготой;

-доминантная гомозигота имеет преимущество над гетерозиготами;

-рецессивная гомозигота имеет высокую селективную ценность;

-у гетерозигот развивается промежуточный вариант признака;

-в фенотипе одновременно проявляется только один из аллельных генов.

Множественный аллелизм означает наличие в генофонде:

-двух аллелей одного гена;

+нескольких аллелей одного гена, отвечающих за развитие данного признака;

-нескольких генов, отвечающих за развитие одного признака;

-одного гена, отвечающего за развитие нескольких признаков;

-ни один из вышеназванных признаков.

При неполном доминировании расщепление по фенотипу потомков от скрещивания двух гетерозиготных организмов составляет:

-1:1;

-1:3:1;

+1:2:1;

-3:1;

-1:1:1.

Код раздела :8

Наименьший титр антител вырабатывается при поступлении в кровь реципиента, эритроцитов донора, несущих антигены, кодируемые генотипами:

-Dd CС ЕЕ;

-Dd Сc EE;

-DD Cc ee;

-DD CC Ee;

+Dd cc ee.

Наибольший титр антител вырабатывается при поступлении в кровь реципиента, эритроцитов донора, несущих антигены, кодируемые генотипами.

-dd Cc EE;

-Dd cc EE;

-dd cc EE;

-dd cc EE;

+Dd Cc ee.

Наибольший титр антител вырабатывается при поступлении в кровь реципиента эритроцитов донора, несущих антигены, кодируемые генотипами:

+DD CC EE;

-DD cc Ee;

-Dd Cc Ee;

-Dd CC ee;

-DD Cc Ee.

Согласно системе Фишера — Рейса генотип резус-отрицательного человека:

-dd Cc ee;

-dd cc Ee;

+dd cc ee;

-dd Cc Ee;

-dd cc EE.

В какой хромосоме кариотипа человека находятся гены С, D, Е, определяющие наличие антигенов-резус на мембране эритроцитов (по Фишеру — Рейсу)?

+1 хр.;

-11 хр.;

-21 хр.;

-10 хр.;

-5 хр..

Ген D, определяющий наличие соответственного антигена на мембране эритроцитов (по Фишеру — Рейсу), имеет следующие аллельные состояния:

-D, d;

-D, Dw, d;

-D1, D2, D3;

+D, Du, d;

-D, Du, du.

Ген С, определяющий наличие соответствующего антигена на мембране эритроцитов (по Фишеру — Рейсу), имеет следующие аллельные состояния:

-С, Сw;

+С, Сw,с;

-С, с;

-С, Сu,с;

-Сu,с.

Код раздела :9

Люди с I группой крови имеют генотип:

-I0I0; IАI0;

-IАIB;

-IBI0;

+I0I0;

-I0I0; IBI0.

Люди со II гр. крови имеют генотип:

-IАI0; I0I0;

-IАIА; IBI0;

-IАIB; I0I0;

-IАI0; IАIB;

+IАIА; IАI0.

Люди с III группой крови имеют генотип:

-IBIB; IАIB;

+IBI0; IBIB;

-IBIB; I0I0;

-IBIB; IАI0;

-IBI0; I0I0.

Люди с IV группой крови имеют генотип:

-IАIА; IАIB;

-IBI0; I0I0;

+IАIB;

-IBI0;

-I0I0.

IV группа крови фенотипически проявляется следующим образом:

+на мембране эритроцитов — антигены А и В, в плазме — антител нет;

-на мембране эритроцитов — антиген А, в плазме — антител нет;

-на мембране эритроцитов — антигенов нет, в плазме антитела альфа, бета;

-на мембране эритроцитов — антиген В, в плазме антител нет;

-на мембране эритроцитов — антигены А и В, в плазме антитела альфа.

I группа крови фенотипически проявляется следующим образом:

-на мембране эритроцитов — антигены В, в плазме антитела — альфа;

-на мембране эритроцитов — антигены А, в плазме антитела — альфа, бета;

+на мембране эритроцитов — антигенов нет, в плазме антитела альфа, бета;

-на мембране эритороцитов — антигены А и В, в плазме антитела альфа, бета;

-на мембране эритроцитов — антигены А и В, в плазме антитела- нет.

II группа крови фенотипически проявляется:

-на мембране эритроцитов антигены А и В, в плазме антител — нет;

+на мембране эритроцитов — антиген А, в плазме антитела -бета;

-на мембране эритроцитов антигенов нет, в плазме антитела — бета;

-на мембране эритроцитов — антиген А, в плазме антитела альфа;

-на мембране эритроцитов — антигены В, в плазме антитела — бета.

III группа крови фенотипически проявляется:

-на мембране эритроцитов — антигены А и В, в плазме антитела альфа;

-на мембране эритроцитов — антиген А, в плазме антитела — бета;

-на мембране эритроцитов — антигенов нет, в плазме антитела альфа, бета;

+на мембране эритроцитов — антигены В, в плазме антитела — альфа;

-на мембране эритроцитов — антигены В, в плазме антитела — бета.

Родители имеют II и III группы крови (гомозиготы). Какие группы крови можно ожидать у их детей?

-II группа крови; III группа крови;

-IV группа крови; I группа крови;

-IV группа крови; III группа крови;

-IV группа крови; II группа крови;

+IV группа крови.

Читайте также:

  1. A. Библейские пророчества напоминают нам, что Бог Суверенный
  2. Hе откладывай на завтра то, что ты отложил вчера на сегодня.
  3. А.15 Укажите, что представляет собой фибра
  4. А2. Что такое уголовно-правовая норма?
  5. Активные компоненты подобраны таким образом, чтобы максимально тщательно воздействовать на проблемные зоны вокруг глаз и ликвидировать темные круги, припухлости и отечность.
  6. Аллах почтил людей тем, что отправил к ним посланников
  7. Аль-Бути неправильно предположил, что слепой мужчина попросил Аллаха вернуть ему зрение ради высокого положения Пророка, мир ему и благословение Аллаха
  8. Берите то, что уже принадлежит вам
  9. Беседа о том, что для плодоносного покаяния необходимо отвержение самомнения
  10. Благовестник обязан знать, по мере сил, что в жизни его нет ничего противного Богу, мешающего служению Духа Его душам слушателей.
  11. Бог не отверг нас. Это мы отвергли себя. Он здесь и Он заботится. Но Он ожидает, что мы будем сотрудничать с Ним, заботясь о себе.
  12. Брошены две игральные кости. Какова вероятность того, что на них выпали грани с одинаковым числом очков?

Аллельные гены. Определение. Формы взаимодействия. Множественный аллелизм. Примеры. Механизм возникновения

Предыдущая12345678910111213141516Следующая

Аллельные гены- различные формы одного и того же гена, расположенные в одинаковых участках (локусах) гомологических хромосом. Аллели определяют варианты развития одного и того же признака. В нормальной диплоидной клетке могут присутствовать не более двух аллелей одного локуса одновременно.

Множественный аллелизм, примеры, механизм возникновения. Наследование групп крови по системе АВО.

В одной гамете два аллеля находиться не могут. Взаимодействие между аллельными генами рассматривается как различные типы доминирования. Исследования проводятся при моногибридном скрещивании. Типы доминирования: 1.Полное 2.Неполное 3.Кодоминирование 4.Сверхдоминирование Полное доминирование – форма взаимоотношений между аллелями одного гена, при которой один из них (доминантный) подавляет проявление другого (рецессивного) и таким образом определяет проявление признака как у доминантных гомозигот, так и у гетерозигот. При неполном доминировании гетерозиготы имеют фенотип, промежуточный между фенотипами доминантной и рецессивной гомозиготы. Например, у душистого горошка известны 2 расы – с красными и белыми цветами. Гибриды, полученные при скрещивании этих рас, имеют промежуточную розовую окраску. При неполном доминировании наблюдается расщепление по генотипу и фенотипу 1:2:1 Кодоминирование — тип взаимодействия аллелей, при котором оба аллеля в полной мере проявляют своё действие. В результате, так как проявляются оба родительских признака, фенотипически гибрид получает не усреднённый вариант двух родительских признаков, а новый вариант, отличающийся от признаков обеих гомозигот. Типичный пример кодоминирования – наследование групп крови системы АВО у человека. Сверхдоминирование заключается в том, что у доминантного аллеля в гетерозиготном состоянии иногда отмечается более сильное проявление, чем в гомозиготном состоянии. Во втором поколении вновь появляется расщепление в соотношении 1:2:1. В фенотипе у 1 части особей проявляется признак одного из родителей, в фенотипе 2 частей проявляется признак как у гибридов первого поколения, в фенотипе ещё 1 части проявляется признак как у второго из родителей .Так, у дрозофилы известна рецессивная летальная мутация, гетерозиготы по которой обладают большей жизнеспособностью, чем гомозиготные мухи дикого типа. Множественный аллелизм- наличие у гена множественных аллелей. Создается так называемая серия аллелей, “рассеянных” в популяции данного вида. Итак, разнообразные стойкие состояния одного и того же гена, занимающего определенный локус в хромосоме, представленные то в виде нормального аллеля, то в виде мутации, получили название множественных аллелей. Примером множественного аллелизма может служит система групп крови АВО,

Предыдущая12345678910111213141516Следующая

Date: 2016-05-23; view: 500; Нарушение авторских прав

Понравилась страница? Лайкни для друзей:

Оставьте комментарий