Микроклональное размножение растений в домашних условиях

Содержание

Клональное микроразмножение и оздоровление растений

Дата: 12 Октября 2014 в 10:59
Автор: P*************@mail.ru
Тип: реферат

Скачать в ZIP (78.45 Кб)Файлы: 1 файлКлональное микроразмножение.docx (80.75 Кб)   —   Открыть,  Скачать

Министерство сельского хозяйства Российской Федерации

ФГБОУ ВПО «ОРЕНБУРГСКИЙ ГОСУДАРСТВЕННЫЙ

АГРАРНЫЙ УНИВЕРСИТЕТ»

ИНСТИТУТ АГРОТЕХНОЛОГИЙ И ЛЕСНОГО ДЕЛА

Кафедра «Селекции и защиты растений»

Реферат

на тему:

«Клональное микроразмножение и оздоровление растений»

             Выполнила:

Студентка 12 группы

               Регер Н. С.

Руководитель:

                          Гарипова Р. Ф.

Оренбург – 2014

  1. Введение
  2. Факторы, влияющие на процесс клонального микроразмножения;
  3. Этапы микроклонального размножения растений;
  4. Методы микроклонального размножения;
  5. Оздоровление посадочного материала от вирусов методами хемотерапии и термотерапии;
  6. Клональное микроразмножение декоративных, плодово-ягодных и хвойных растений;
  7. Заключение;
  8. Список использованной литературы.

Введение

В природе существует два способа размножения растений: половой (семенной) и вегетативный. Оба эти способа имеют как свои преимущества, так и недостатки.

К недостаткам семенного размножения относятся генетическая пестрота семенного материала и длительность ювенильного периода.

При вегетативном размножении генотип материнского растения сохраняется, а также сокращается длительность ювенильного периода. Однако большинство видов плохо размножается вегетативным способом, к ним относятся многие древесные породы. Например, эффективность размножения, даже на ювенильной стадии, дуба, сосны, ели, орехоплодных не очень высока. Кроме того, с помощью черенкования невозможно размножать многие виды древесных растений в возрасте старше 10-15 лет. Трудно получить стандартный посадочный материал, так как существует возможность накопления и передачи инфекции. Операции по размножению с помощью прививок сложны и трудоемки.

Достижения в области культуры клеток и тканей привели к созданию принципиально нового метода вегетативного размножения — клонального микроразмножения. Клональное микроразмножение — получение in vitro, неполовым путем, генетически идентичных исходному экземпляру растений. В основе метода лежит уникальная способность растительной клетки реализовывать присущую ей тотипотентность. Термин "клон" был предложен в 1903 году Уэбстером (от греческого klon — черенок или побег, пригодный для размножения растений). В соответствии с научной терминологией клонирование подразумевает получение идентичных организмов из единичных клеток.

В России первые работы по клональному микроразмножению были проведены в 60-х годах XX в. в лабораториях Института физиологии растений им. К. А. Тимирязева. В настоявшее время созданы и развиваются лаборатории клонального микроразмножения, связанные с нуждами селекции, размножением декоративных, лекарственных и других растений. Кроме того, технология используется для размножения лучших экземпляров взрослых лесных деревьев, особенно хвойных, для сохранения редких и исчезающих видов растений.

Культивирование тканей хвойных пород in vitro долгое время редко использовалось как объект исследования. Это было связано со специфическими трудностями культивирования тканей, изолированных из растения. Известно, что древесные, и особенно хвойные растения характеризуются медленным ростом, трудно укореняются, содержат большое количество вторичных соединений (фенолы, терпены и т.д.), которые в изолированных тканях активируются. Окисленные фенолы обычно ингибируют деление и рост клеток, что ведет к гибели первичного экспланта или уменьшению способности тканей древесных растений к регенерации адвентивных почек, которая с возрастом растения-донора исчезает практически полностью. В настоящее время, несмотря на перечисленные трудности, насчитывается более 200 видов древесных растений из 40 семейств, которые были размножены in vitro (каштан, дуб, береза, клен, сосна, ель, секвойя и др.).

Актуальность темы.

В связи с возрастающим интересом и спросом в на новые растения и развитием внутреннего и внешнего озеленения строений, а также необходимостью сокращения импорта посадочного материала низкого качества становится актуальной проблема массового размножения однолетних и многолетних культур. Наличие инфекционного фона у посадочного материала сказывается не только на качестве цветения, внешнем виде и продолжительности жизни растений, но и на заражение окружающей среды опасными патогенами, что оказывает отрицательное влияние на экологию данного участка.

Эта проблема может быть успешно решена методом клонального микроразмножения, который используется не только в коммерческих целях, но и для выявления общих закономерностей морфогенеза растений, их особенностей и проявления в условиях iv vitro.

Преимущество метода клонального микроразмножения.

Метод имеет ряд преимуществ перед существующими традиционными способами размножения:

  • получение генетически однородного посадочного материала;

  • освобождение растений от вирусов за счет использования меристемной культуры;

  • высокий коэффициент размножения (105 — 106 — для травянистых, цветочных растений, 104 — 105 — для кустарниковых древесных растений и 104 — для хвойных);

  • сокращение продолжительности селекционного процесса;

  • ускорение перехода растений от ювенильной к репродуктивной фазе развития;

  • размножение растений, трудно размножаемых традиционными способами;

  • возможность проведения работ в течение всего года;

  • возможность автоматизации процесса выращивания.

     Факторы, влияющие на процесс клонального микроразмножения.

На эффективность микроклонального размножения  влияет масса факторов различной природы. Это физиологические особенности вводимого в культуру растения, химические и физические условия культивирования. Наиболее важным моментом является выбор материнского растения и экспланта.

При выборе материнского растения  необходимо учитывать его физиологические, сортовые и видовые особенности. Исходные растения должны быть здоровы, не поражены грибными, бактериальными и вирусными болезнями. Кроме того, они должны находится в состоянии интенсивного роста (выход из фазы покоя и переход к активному росту). Луковицы, корневища и клубни в состоянии покоя непригодны, перед введением в культуру их предварительно обрабатывают высокими или низкими температурами. Способность к размножению также детерминирована генетически. Например, земляника размножается всеми способами, облепиха – ни одним, хотя в природе черенкуется. Двудольные обладают большей регенерационной способностью, чем однодольные и древесные.

При выборе экспланта необходимо учитывать его возраст, строение и происхождение. Для обеспечения максимальной стабильности клонируемого материала, во избежание появления аномальных растений в качестве экспланта желательно использовать молодые, слабодифференцированные ткани. Кроме того, экспланты от ювенильных растений лучше укореняются, чем от зрелых, особенно это касается древесных пород. Лучше всего использовать кончики стеблей, пазушные почки, зародыши, молодые листья, черенки, соцветия, чешую луковиц, то есть экспланты, содержащие меристемы. Опыты с эмбрионами кукурузы, проведенные Грином и Филипсом в 1975 году, показали, что при извлечении эмбрионов из зрелых семян они образуют каллус и корни. Если же изолировать их через 2 – 3 недели после опыления, то образуются и каллус, и растения. Вероятно, это связано с разворачиванием генетической программы в онтогенезе растения. Следует отметить, что не всегда молодые ткани являются удачным объектом для размножения. У эхеверии на эксплантах из молодых листьев возникают только корни, из старых – только побеги, из средних по возрасту – и побеги, и корни. Чем меньше размер экспланта, тем меньше его регенерационная способность. С другой стороны, в крупном экспланте увеличивается возможность появления в его клетках вирусов и других патогенов, что препятствует оздоровлению тканей.

Длительность культивирования также влияет на эффективность микроразмножения. Физиологическое состояние экспланта меняется в течение пассажей, при длительном культивировании частота укореняемости побегов возрастает. Возможно, что при этом эксплант приобретает признаки ювенильности, что ведет к повышению его морфогенетического потенциала.

Успех введения в культуру часто определяется эффективностью стерилизации. Выбор стерилизующего агента определяется особенностями экспланта. Для нежных тканей концентрация стерилизующего агента должна бать снижена, чтобы сохранить жизнеспособность экспланта. Часто внутреннее заражение исходных эксплантов бывает намного сильнее, чем поверхностное, поэтому экспланты предварительно обрабатывают фунгицидами и антибиотиками против грибной и бактериальной инфекций. Хорошие результаты дает обработка растений бензоатом натрия.

В зависимости от вида растений необходимо испытывать как твердые, так и жидкие питательные среды. Иногда жидкие среды имеют преимущество, так как обеспечивают большую подвижность трофических элементов. Например, при размножении роз более успешным было культивирование побегов на двухслойной питательной среде: нижний слой – агаризованный, верхний – жидкий. На эффективность размножения могут также влиять расположение экспланта (горизонтальное или вертикальное), тип пробок (ватные, пластмассовые, стеклянные, металлические и т.д.), а также соотношение объема эксплантов и количества питательной среды для оптимального освещения и газообмена эксплантов.

Состав питательной среды необходимо подбирать для каждого вида растений. На клональное микроразмножение влияют гормоны, минеральные соли, витамины и углеводы. При микроразмножении in vitro часто используют среды Мурасиге и Скуга, Линсмайера и Скуга, Шенка и Хильдебрандта, Нича, Гамборга, Хеллера и другие. Обычно используют среду Мурасиге–Скуга, которая содержит много неорганического азота, что стимулирует процессы органогенеза и соматического эмбриогенеза. В экспериментах (Кузьмина Н.А., Внукова В.В., 1997)  выход морфогенных каллусов твердой пшеницы был выше на среде Мурасиге-Скуга по сравнению со средой Гамборга, которая одержала окисленные формы азота. Среда Мурасиге-Скуга также способствовала стабилизации хромосомного набора клеток твердой пшеницы при высоком содержании ауксина в среде.

Меристемные растения. Адаптация растения из пробирки в домашних условиях

Вообще вопрос оптимального соотношения NH4 : NO3 остается открытым, так как литературные данные весьма противоречивы и универсального рецепта для всех видов растений нет. В качестве источника углеродного питания используют различные углеводы типа сахарозы, глюкозы, фруктозы, галактозы. Разные культуры требуют различной концентрации углеводов на разных этапах клонального микроразмножения.

К физическим факторам выращивания относятся температура и условия освещения. На первых двух этапах освещенность колеблется от 1000 до 3000 Лк,  фотопериод 14 – 16 часов, но эти параметры зависят от культуры. Высокая интенсивность света может вызывать хлорозы и задерживать развитие, но при переносе в почву эти растения чувствуют себя лучше и растут энергичнее. Спектральный состав также играет немаловажную роль. Некоторые исследователи (Катаева Н.В., Аветисов В.А, 1981) указывают на синий свет как основной компонент морфогенеза. Красный свет стимулирует образование почек у табака, у салата – образование побегов, у березы –  укоренение. В работах Т.Н. Константиновой с соавторами (1987) показано, что синий свет усиливает закладку вегетативных почек у побегов табака в условиях in vitro , а красный стимулирует развитие цветочных почек. Однако при добавлении цитокининов и ауксинов в различной концентрации соотношение процессов дифференциации цветочных и вегетативных почек меняется, в некоторых случаях наблюдается даже противоположный эффект. В исследованиях  Р. А. Карначук и Е. С. Гвоздевой (1998) наибольший выход морфогенных каллусов пшеницы, формирующих растения и побеги, отмечен на зеленом свету. Важное значение играет также сочетание спектрального состава света и гормональных факторов среды.

Температура культивирования обычно варьирует в интервале 22 – 26оС днем и 18 – 22оС ночью. В некоторых случаях понижение температуры ведет к повышению эффективности размножения. Для повышения коэффициента размножения необходимо каждому виду с учетом его естественного ареала произрастания подбирать индивидуальные условия культивирования. Относительная влажность воздуха – 65 – 70%

Этапы микроклонального размножения растений.

Процесс клонального микроразмножения можно разделить на 4 этапа:

1. Выбор растения-донора, изолирование эксплантов и получение хорошо растущей стерильной культуры.

2. Собственно микроразмножение, когда достигается получение максимального количества меристематических клонов.

3. Укоренение размноженных  побегов с последующей адаптацией  их к почвенным условиям, а  при необходимости депонирование  растений-регенерантов при пониженной температуре (+2оС, +10оС).

4. Выращивание растений  в условиях теплицы и подготовка  их к реализации или посадке  в поле.

Для культивирования тканей на каждом из четырех этапов требуется применение определенного состава питательной среды.

На первом этапе необходимо добиться получения хорошо растущей стерильной культуры. В тех случаях, когда трудно получить исходную стерильную культуру экспланта, рекомендуется вводить в состав питательной среды антибиотики (тетрациклин, бензилпенициллин и др.) в концентрации 100—200 мг/л. Это в первую очередь относится к древесным растениям, у которых наблюдается тенденция к накоплению внутренней инфекции.

Краткое описание

Достижения в области культуры клеток и тканей привели к созданию принципиально нового метода вегетативного размножения — клонального микроразмножения. Клональное микроразмножение — получение in vitro, неполовым путем, генетически идентичных исходному экземпляру растений.

Оглавление

1. Введение
2. Факторы, влияющие на процесс клонального микроразмножения;
3. Этапы микроклонального размножения растений;
4. Методы микроклонального размножения;
5. Оздоровление посадочного материала от вирусов методами хемотерапии и термотерапии;
6. Клональное микроразмножение декоративных, плодово-ягодных и хвойных растений;
7. Заключение;
8. Список использованной литературы.

Раздел "Культуры растительных клеток"

Микроклональное размножение и оздоровление растений

Методы микроклонального размножения

Методы клонального микроразмножения

Существует много методов клонального микроразмножения, а также различных их классификаций. Согласно одной из них, предложенной Мурасиге в 1977 году, процесс можно осуществлять следующими путями:

1. Активация пазушных меристем.

2. Образование адвентивных побегов тканями экспланта.

3. Возникновение адвентивных побегов в каллусе.

4. Индукция соматического эмбриогенеза в клетках экспланта.

5. Соматический эмбриогенез в каллусной ткани.

6. Формирование придаточных эмбриоидов в ткани первичных соматических зародышей (деление первичных эмбриоидов).

Н. В. Катаева и Р. Г. Бутенко (1983) выделяют два принципиально различных типа клонального микроразмножения:

1. Активация уже существующих в растении меристем (апекс стебля, пазушные и спящие почки стебля).

2. Индукция возникновения почек или эмбриоидов de novo :

а) образование адвентивных побегов непосредственно тканями экспланта;

б) индукция соматического эмбриогенеза;

в) дифференциация адвентивных почек в первичной и пересадочной каллусной ткани.

Основной метод, использующийся при клональном микроразмножении растений — активация развития уже существующих в растении меристем. Он основан на снятии апикального доминирования (рис. 18).

Этого можно достичь двумя путями: а) удалением верхушечной меристемы стебля и последующим микрочеренкованием побега in vitro на безгормональной среде; б) добавлением в питательную среду веществ цитокининового типа действия, индуцирующих развитие многочисленных пазушных побегов. Как правило, в качестве цитокининов используют 6-бензиламинопурин (БАП) или 6-фурфуриламинопурин (кинетин) и зеатин.

Рис. 18. Схема размножения растений методом активации уже существующих меристем (по А. Р. Родину, Е. А. Калашниковой, 1993): 1 – путем удаления верхушечной меристемы: 2 – добавлением цитокининов в среду (б/г – среда без гормонов, Ц – цитокинин, А – ауксин)

Полученные таким образом побеги отделяют от первичного экспланта и вновь самостоятельно культивируют на свежеприготовленной питательной среде, стимулирующей пролиферацию пазушных меристем и возникновение побегов более высоких порядков.

Часто в качестве экспланта используют верхушечные или пазушные почки, которые изолируют из побега и помещают на питательную среду с цитокининами. Образующиеся пучки побегов  делят, при необходимости черенкуют и переносят на свежую питательную среду. После нескольких пассажей, добавляя в питательную среду ауксины, побеги укореняют in vitro(рис. 19), а затем переносят в почву, где создают условия, способствующие  адаптации растений (рис. 20).

Рис. 19. Образование корней побегами розы при добавлении в питательную среду 2 мг/л 2,4-Д

Рис. 20. Адаптация пробирочных роз к почвенным условиям

 В настоящее время этот метод широко используется в производстве посадочного материала сельскохозяйственных культур, как технических, так и овощных, а также для размножения культур промышленного цветоводства (например, гвоздики, рис. 21),  тропических и субтропических растений, плодовых и ягодных культур, древесных растений. Для некоторых культур, таких как картофель, технология клонального размножения поставлена на промышленную основу. Применение метода активации развития существующих меристем позволяет получать из одной меристемы картофеля более 100000 растений в год, причем технология предусматривает получение в пробирках микроклубней — ценного безвирусного семенного материала.

Рис. 21. Пробирочная гвоздика

Второй метод — индукция возникновения адвентивных почек непосредственно тканями экспланта. Он основан на способности изолированных частей растения при благоприятных условиях питательной среды восстанавливать недостающие органы и таким образом регенерировать целые растения. Можно добиться образования адвентивных почек почти из любых органов и тканей растения (изолированного зародыша, листа, стебля, семядолей, чешуек и донца луковиц, сегментов корней и зачатков соцветий). Этот процесс происходит на питательных средах, содержащих цитокинины в соотношении с ауксинами 10:1 или 100:1. В качестве ауксина используют ИУК или НУК. Таким способом были размножены многие представители семейства лилейных, томаты, древесные растения (из зрелых и незрелых зародышей).

Достаточно хорошо разработана технология клонального размножения земляники, основанная на культивировании апикальных меристем.

Меристематические верхушки изолируют из молодых, свободных от вирусных болезней растений, и выращивают на питательной среде МС, содержащей БАП в концентрации 0,1 — 0,5 мг/л. Через 3 — 4 недели культивирования меристема развивается в проросток, в основании которого формируются адвентивные почки, быстро растущие и дающие начало новым почкам. В течение 6-8 недель образуется конгломерат почек, связанных между собой соединительной тканью и находящихся на разной стадии развития. Появляются листья на коротких черешках, в нижней части которых формируются новые адвентивные почки. Эти почки разделяют и пересаживают на свежую питательную среду. На среде без регуляторов роста за 4 — 5 недель формируются нормальные растения с корнями и листьями. От одного материнского растения таким образом можно получить несколько миллионов растений-регенерантов в год.

Третий метод, практикуемый при клональном микроразмножении, основывается на дифференциации из соматических клеток зародышеподобных структур, которые по своему виду напоминают зиготические зародыши (рис. 22). Этот метод получил название соматического эмбриогенеза. В отличие от развития in vivo, соматические зародыши развиваются асексуально вне зародышевого мешка и по своему внешнему виду напоминают биполярные структуры, у которых одновременно наблюдается развитие апикальных меристем стебля и корня. Согласно Стеварду, соматические зародыши проходят 3 стадии развития: глобулярную, сердцевидную, торпедовидную и в конечном итоге имеют тенденцию развития в проросток. На рисунке 3 показан конечный результат развития – растение пшеницы.

Рис. 22. Соматический эмбриогенез в каллусной ткани

Наиболее впечатляющим применением метода соматического эмбриогенеза стало размножение гвинейской масличной пальмы (Elaeis guineensis), масло которой широко используется при производстве маргарина и пищевого масла. Масличная пальма в природе не образует побегов и боковых ростков, что затрудняет ее вегетативное размножение. Культивирование черенков in vitro также невозможно. Было решено получить скопления клеток недифференцированной ткани (каллусы) путем дедифференцировки специфических тканей, а затем культивировать их до регенерации целых проростков. В первой культуральной среде каллусы из фрагментов листьев развивались в течение 90 дней, при переносе во вторую и третью культуральные среды превращались в "эмбриоиды". Эмбриоиды размножались самопроизвольно, в течение месяца число эмбриоидов возрастало втрое, а за год из 10 эмбрионов можно было получить потомство численностью 500000 растений.

Формирование эмбриоидов в культуре тканей осуществляется в несколько этапов. Сначала происходит дифференциация клеток под влиянием ауксинов, добавленных в питательную среду (2,4-Д) и превращение их в эмбриональные. Получить эмбриоиды из этих клеток можно уменьшая концентрацию ауксинов или исключая их из питательной среды. Соматические зародыши представляют собой полностью сформированные зародыши, из которых путем соответствующего капсулирования можно получить искусственные семена.

Четвертый метод клонального микроразмножения — дифференциация адвентивных почек в первичной и пересадочной каллусной ткани (рис. 23).

Рис. 23. Дифференциация придаточных почек в каллусной ткани

Практически он мало используется с целью получения посадочного материала in vitro. Это связано с тем, что при частом пассировании каллусной ткани может изменяться плоидность регенерируемых растений, наблюдаются структурные перестройки хромосом и накопление генных мутаций.

Технология микроклонального размножения хризантемы в условиях in vitro

Наряду с генетическими изменениями отмечаются и морфологические: низкорослость, неправильное жилкование листьев, образование укороченных междоузлий, пониженная устойчивость к болезням и вредителям. В то же время, некоторые недостатки этого метода в селекционной работе оборачиваются преимуществами.

Рис. 24. Формирование побегов каллусной тканью пшеницы

Кроме того, в некоторых случаях он является единственно возможным способом размножения растений в культуре тканей. Через каллусную культуру успешно размножаются сахарная свекла, злаковые (рис. 24), представители рода Brassica, подсолнечник и другие культуры.

Читать дальше ► оздоровление от вирусов in vitro

Микроклональное размножение

Метод микроклонального размножения играет важную роль для ускоренного клонирования плодовых, ягодных, клубнеплодных, декоративных видов растений и древесных пород.

Практика и результаты деятельности однозначно свидетельствуют о достижении превосходных результатов: растения приобретают более выраженные жизнестойкие характеристики (в сравнении с натуральным произведением посадочного материала), а в случае с плодово-ягодными культурами достигается увеличение урожайности. Все это однозначно свидетельствует в пользу того, что клональное микроразмножение – передовая технология в садоводстве.

Анализируя клонирование растений с использованием технологии микроклонального размножения, можно увидеть, что применяющаяся методика аналогична той, которую имеет бесполое вегетативное размножение. Разница состоит в том, что культивирование in vitro происходит в пробирке и предоставляет возможность на выходе иметь достаточно большое количество новых растений, которые будут идентичными с исходным материалом в генетическом коде. Данная биотехнология в своей основе имеет способность клетки живого организма (растения) реализовывать собственную уникальную тотипотентность – при создании оптимальных условий быть основой для развития нового растительного организма.

Чтобы культура инвитро правильно и эффективно развивалась, должны соблюдаться определенные требования. Прежде всего, специалисты нашей компании поддерживают в растении генетическую стабильность на каждом из этапов онтогенеза. В результате многочисленных исследований и опытов было установлено, что в этом отношении использование апексов и пазушных почек стеблевого происхождения имеет наиболее очевидные преимущества для использования в клональном микроразмножении. Кроме того, меристемные культуры прекрасно производятся с использованием изолированных органов, из которых специалисты получают адвентивные почки.

Принцип оздоровления заложен в самой технологии клонального микроразмножения.

Технология, использующаяся нашей компанией при клональном микроразмножении, изначально обеспечивает получение здоровых и крепких растений. Секрет успеха заключается в использующемся материале.

Микроклональное размножение

Метод предусматривает работу с верхушечной частью растущего побега – зоной, в которой происходит деление клеток. Так как размер данной зоны чрезвычайно мал (он составляет максимум 0,1 мм), процесс проводятся с использованием микроскопа. Зона, в которой происходит деление клеток, является стерильной – из-за отсутствия проводящей системы, в ней не может быть вирусов или разнообразных инфекций. Это обеспечивает получение «чистого», здорового посадочного материала.

Этапы работы в меристеме очень сложны, к тому же, этот процесс обладает достаточно низким уровнем приживаемости – исчисляющимся лишь 10 %. Иными словами, из 100 эксплантов, которые были введены, выживет только 10. Это объясняет, почему меристему трудно использовать в промышленных целях, а исключительно в качестве научно-исследовательской работы.

prevnext

Отбор маточного растения

Растение должно соответствовать сорту, не иметь признаков заражения

Введение растений в культуру

Эксплант (почка, кусочек листа, корня и т.д.) освобождаются от инфекций и помещаются на искусственную питательную среду, содержащую все необходимые вещества для роста, с добавлением фитогормонов.

Собственно, микроразмножение

Образование побегов и увеличение их количества.

Элонгация

Процесс подготовки растений к укоренению. В этот период происходит вытягивание минирастений на безгормональной питательной среде с высоким содержанием питательных солей.

Укоренение

Побеги переносятся на питательную среду с добавление определенных фитогормонов для корнеобразования. Перед посадкой на среду пучки  минирастений разделяют на одиночные растения, чтобы каждый побег давал свой корень.

Высадка растений в почву

Сначала растения высаживаются в закрытый грунт, а после их адаптации к данным условиям переносятся в открытый грунт. Минирастения должны привыкнуть к пониженной влажности, переменной освещенности и температуры.

Оставьте комментарий