Методы определения витаминов

Содержание: стр:

Введение……………………………………………………………2

1. Общий обзор методов определения витаминов…………………3

2. Хроматографические методы определения витаминов…………5

3. Электрохимические методы определения витаминов…………10

4. Инверсионно вольтамперометрический метод определения

водорасторимых витаминов B1 B2 в пищевых продуктах………..13

Заключение…………………………………………………………18

Введение

В настоящее время на рынке появилось огромное количество витаминизированных продуктов питания для человека и кормов для животных, представляющих собой сухие многокомпонентные смеси. Ассортимент таких продуктов представлен достаточно широко. Это, прежде всего, биологически активные добавки к пище, премиксы, комбикорма для животных и птиц, поливитаминные препараты. Критерием качества таких продуктов может являться их анализ на содержание витаминов и, особенно, таких жизненно необходимых, как водорастворимые и жирорастворимые витамины, количество которых регламентируется нормативными документами и санитарными нормами качества.

Для определения витаминов применяют различные методы. Широко используемые оптические методы анализа трудоемки, требуют больших затрат времени и дорогостоящих реактивов, применение хроматографических методов осложнено использованием дорогостоящего оборудования. С каждым годом расширяется ассортимент и увеличивается производство продуктов питания, совершенствуется рецептура детского питания. Это в свою очередь предъявляет повышенные требования к контролю за качеством выпускаемой продукции и совершенствованию методов определения витаминов. Медико-биологические требования и санитарные нормы качества продовольственного сырья и пищевых продуктов характеризуют пищевую ценность большинства видов и групп продуктов детского питания различного назначения.

1. Общий обзор методов определения витаминов

Почти все витамины легко подвергаются окислению, изомеризации и разрушаются под воздействием высокой температуры, света, кислорода воздуха, влаги и других факторов.

Из существующих методов определения витамина С (аскорбиновой кислоты) наиболее широко применяют метод визуального и потенциометрического титрования раствором 2,6-ди-хлорфенолиндофенола по ГОСТ 24556—81, основанный на редуцирующих свойствах аскорбиновой кислоты и ее способности восстанавливать 2,6-ДХФИФ. Темно-синяя окраска этого индикатора при добавлении аскорбиновой кислоты переходит в бесцветную. Важное значение имеет приготовление экстракта исследуемого продукта. Наилучшим экстрагентом является 6 %-ный раствор метафосфорной кислоты, который инактивирует аскорбинотоксидазу и осаждает белки.

Каротин в растительном сырье, концентратах и безалкогольных напитках контролируют физико-химическим методом по ГОСТ 8756.22—80. Метод основан на фотометрическом определении массовой доли каротина в растворе, полученном в процессе экстрагирования из продуктов органическим растворителем. Предварительно раствор очищают от сопутствующих красящих веществ с помощью колоночной хроматографии. Каротин легко растворяется в органических растворителях (эфир, бензин и др.) и придает им желтую окраску. Для количественного определения каротина используют адсорбционную хроматографию на колонках с окисью алюминия и магния. Такое определение пигментов на колонке зависит от активности адсорбента, количества пигментов, а также присутствия других компонентов в разделяемой смеси. Сухая смесь окиси алюминия задерживает каротин, а влажная пропускает в раствор другие красящие вещества.

Тиамин в основном находится в связанном состоянии в виде дифосфорного эфира — кокарбоксилазы, которая является активной группой ряда ферментов. С помощью кислотного гидролиза и под воздействием ферментов тиамин освобождается из связанного состояния. Этим способом определяют количество тиамина. Для расчета содержания витамина B1 используют флюрометрический метод, который применяют для определения тиамина в пищевых продуктах. Он основан на способности тиамина образовывать в щелочной среде с феррнцианндом калня тиохром, который дает интенсивную флюоресценцию в бутиловом спирте. Интенсивность процесса контролируют на флюорометре ЭФ-ЗМ.

В продуктах питания и напитках рибофлавин присутствует в связанном состоянии, т. е. в форме фосфорных эфиров, связанных с белком. Чтобы определить количество рибофлавина в продуктах, необходимо освободить его из связанного состояния путем кислотного гидролиза и обработки ферментными препаратами. Витамин B1 в безалкогольных напитках рассчитывают с помощью химического метода для определения количества легкогидролизуемых и прочно связанных форм рибофлавина в тканях. Метод основан на способности рибофлавина к флюоресценции до и после восстановления его гипосульфитом натрия. Определение общего содержания фенольных соединений. Для этого используют колориметрический метод Фолина — Дениса, который основан на образовании голубых комплексов при восстановлении вольфрамовой кислоты под действием полифенолов с реагентом в щелочной среде. Фенольные соединения определяют по хлорогеновой кислоте методом пламенной фотометрии на приборе ЕКФ-2.

2. Хроматографические методы определения витаминов

В последнее время за рубежом бурное развитие переживает метод высокоэффективной жидкостной хроматографии.

Это связано, прежде всего, с появлением прецизионных жидкостных хроматографов, совершенствованием техники выполнения анализа. Широкое использование метода ВЭЖХ при определении витаминов нашло отражение и в числе публикаций. На сегодняшний день более половины всех опубликованных работ по анализу как водо- так и жирорастворимых витаминов посвящено применению этого метода.Широкое распространение при определении витаминов получили различные варианты хроматографии.

Для очистки токоферола от посторонних примесей используют метод тонкослойной хроматографии В сочетании со спектрофотометрическими и флуориметрическими методами этим способом проводят и количественное определение витамина Е. При разделении используют пластинки с силуфолом , кизельгелем

Метод газовой хроматографии рекомендован Государственной Фармакопеей (ГФ XI) для анализа масляных растворов а-токоферола ацетата. Этим способом определяют витамин Е в виде гептафторбутирильных производных и в пищевых продуктах.

Анализ изомеров токоферола в оливковом масле проводится методом газо-жидкостной хроматографии. Методики анализа ГХ и ГЖХ требуют получения летучих производных, что крайне затруднительно при анализе жирорастворимых витаминов. По этой причине данные способы определения не получили большого распространения. Определение витамина Е в пищевых продуктах, фармпрепаратах и биологических объектах проводят в градиентном и изократическом режимах как в нормально-фазовых, так и в обращенно-фазовых условиях. В качестве адсорбентов используют силикагель (СГ), кизельгур, силасорб , ODS-Гиперсил и другие носители. Для непрерывного контроля состава элюата в жидкостной хроматографии при анализе витаминов и увеличения чувствительности определения используют УФ (А,=292 нм), спектрофотометрический (Х=295нм), флуоресцентный (Х,=280/325нм), электрохимический, ПМР- [81] и масс-спектроскопический детекторы.

Большинство исследователей для разделения смесей всех восьми изомеров токоферолов и их ацетатов предпочитают использовать адсорбционную хроматографию. В этих случаях подвижной фазой обычно служат углеводороды, содержащие незначительные количества какого-либо простого эфира. Перечисленные методики определения витамина Е, как правило, не предусматривают предварительного омыления образцов, что существенно сокращает время выполнения анализа.

Разделение с одновременным количественным определением содержания жирорастворимых витаминов (А, Д, Е, К) при их совместном присутствии в поливитаминных препаратах проводят как на прямой, так и на обращенной фазах. При этом большинство исследователей предпочитают использовать обращенно-фазовый вариант ВЭЖХ. Метод ВЭЖХ позволяет анализировать водорастворимые витамины В1 и В2 как одновременно, так и отдельно. Для разделения витаминов используют обращенно-фазный, ион-парный и ионообменный варианты ВЭЖХ. Применяют как изократический, так и градиентный режимы хроматографирования. Предварительное отделение определяемых веществ от матрицы осуществляют путем ферментативного и кислотного гидролиза пробы.

Преимущества метода жидкостной хроматографии:

-Одновременное определение нескольких компонентов

-Устранение влияния мешающих компонентов

— Комплекс можно быстро перестроить на выполнение других анализов.

Состав и характеристика оборудования и программного обеспечения для жидкостного хроматографа "Хромос ЖХ-301":

Таблица 1

-высокая стабильность и точность поддержания расхода элюента обеспечивается конструкцией насосов высокого давления.

-легкий доступ к колонкам обеспечивается конструкцией прибора.

-эффективность разделения обеспечивается применением высокоэффективных хроматографических колонок.

-широкий линейный диапазон измерительного сигнала детекторов без переключений предела измерения, что позволяет с высокой точностью измерять пики как большой, так и малой концентрации.

Хроматограмма анализа водорастворимых витаминов:

1 аскорбиновая кислота (C),
2 никотиновая кислота (Niacin),
3 пиридоксин (B6),
4 тиамин (B1),
5 никотинамид (B3),
6 фолиевая кислота (M),
7 цианокобаламин (B12),
8 рибофлавин (B2).

Витамины влияют на обмен веществ через систему ферментов и гормонов. Витамины необходимы для синтеза гормонов — особых биологически активных соединений, которые регулируют самые разные функции организма. Получается, что витамины, являясь необходимыми элементами ферментной и гормональной систем, регулируют наш обмен веществ, поддерживают нас в хорошей форме.

Витамины не действуют по одиночке, они работают в "команде". Однако, витамины в каждой команде должны содержаться в строго определенном количестве, иначе они могут навредить здоровью человека.

1.3. Витамин С – общая характеристика

Другие названия: аскорбиновая кислота, антицинготный витамин, антискорбутный витамин. Цинга, или скорбут, — заболевание, возникающее при недостаточном содержании в рационе свежих овощей и фруктов. Тяжкие страдания мореплавателей и путешественников, гибель полярных экспедиций были результатом дефицита аскорбиновой кислоты. Только к концу ХIХ в. стали считать, что цинга -это болезнь, возникающая не из-за токсического действия продуктов питания, а из-за недостатка в рационе определенных веществ, которые содержатся в свежих овощах, зелени, фруктах, к тому времени уже было установлено, что организм человека не способен синтезировать эти вещества.

Но лишь в 30-х гг. XX в. удалось выяснить, каково строение антицинготного фактора, который получил название "витамин С".

Это, пожалуй, самый известный из витаминов. Он стимулирует рост, участвует в процессах тканевого дыхания, обмене аминокислот (структурных блоков белка), способствует усвоению углеводов. Аскорбиновая кислота повышает сопротивляемость организма к инфекциям, интоксикациям химическими веществами, перегреванию, охлаждению, кислородному голоданию, одна из важнейших функций витамина С — синтез и сохранение коллагена — белка, который "цементирует" клетки и тем самым служит основой образования соединительных тканей. Коллаген скрепляет сосуды, костную ткань, кожу, сухожилия, зубы. Витамин С нормализует уровень холестерина в крови, способствует усвоению железа из пищи, требуется для нормального кроветворения, влияет на обмен многих витамине’ Важнейшая функция витамина С — антиоксидантная. Он противодействует токсическому действию свободных радикалов — агрессивных элементов, образующихся в организме при многих отрицательных воздействиях и заболеваниях. Аскорбиновая кислота участвует в выработке адреналина — гормона "боеготовности", увеличивающего частоту пульса, кровяное давление, приток крови к мускулам.

Этот важнейший водорастворимый витамин в природных условиях встречается в трех формах: в виде аскорбиновой кислоты, дегидроаскорбиновой кислоты и аскорбигена.

В организме человека аскорбиновая кислота не образуется.

Поступающий с пищей витамин с начинает всасываться уже в полости рта и желудке, но основное его количество усваивается в тонкой кишке. В теле здорового взрослого человека содержится от 4 до 6 г аскорбиновой кислоты. Суточная потребность в витамине С — 70-100 мг.

Потребность в аскорбиновой кислоте повышается в условиях неблагоприятного климата. Так, в Антарктиде человеку нужно ежедневно принимать 250 мг витамина С. При большой мышечной нагрузке, стрессовых ситуациях, большинстве заболеваний нужно увеличить его потребление.

1.4. Положительное влияние витамина С на организм человека

  • Витамин С предохраняет организм от многих вирусных и бактериальных инфекций
  • Повышает эластичность и прочность кровеносных сосудов.
  • Помогает очищать организм от ядов, начиная от сигаретного дыма и кончая ядом змей.
  • Активизирует работу эндокринных желез, особенно надпочечников.
  • Улучшает состояние печени.
  • Ослабляет воздействие различных аллергенов.
  • Способствует снижению холестерина в крови.
  • Защищает от окисления необходимые организму жиры и жирорастворимые витамины особенно А и Е).
  • Ускоряет заживление ран, ожогов, кровоточащих десен.
  • Повышает сопротивляемость организма к любым неблагоприятным воздействиям.
  • Эффективен витамин С при лечении большинства заболеваний.

1.5. Взаимодействие витамина С с другими веществами

В состав кожуры цитрусовых входят биофлавоноиды, которые способствуют усвоению витамина С. Витамин С, содержащийся в плодах шиповника, также содержит флавоноиды и другие ферменты, которые помогают лучшему его усвоению.

Большие дозы витамина С (более 1 г) могут снизить способность организма усваивать витамин В12 из пищи. Это может привести к дефициту этого витамина.

При попадании болезнетворных бактерий в организм количество витамина С снижается. Где-то 25 мг аскорбиновой кислоты теряется при выкуривании одной сигареты.

1.6. «Враги» витамина С

Аскорбиновой кислоте «противопоказаны": вода, обработка пищевых продуктов, тепло, свет, кислород, курение. Основной враг витамина С — кислород, так как он необратимо окисляет аскорбиновую кислоту до неактивных веществ. Поэтому при любой кулинарной обработке продуктов необходимо снижать доступ кислорода до возможного минимума. Рекомендуется использовать герметичные крышки, сохранять поверхностный слой а, также сокращать сроки готовки. Особенно усиливается окисление при повреждении структуры растений (при резке, и т. п.), повышении температуры, в щелочной и нейтральной среде. В кислой среде, напротив, аскорбиновая кислота устойчива и выдерживает нагревание до 100 "С. поэтому она хорошо сохраняется в кислой капусте, яблоках и т.

д. Во всех растительных продуктах аскорбиновой кислоте сопутствует антивитамин — фермент аскорбиназа. Этот фермент необратимо разрушает витамины до биологически неактивных соединений, постепенно выделяясь при хранении. При разрушении тканей растения фермент выделяется интенсивнее.

Меньше всего аскорбиназы в черной смородине и цитрусовых, поэтому в них дольше сохраняется витамин С.

1.7. Признаки недостаточного содержания витамина С в организме

Недостаточность витамина С развивается, как правило, на фоне его малого поступления с пищей, однако дефицит витамина может возникнуть и при нарушениях всасывания, обусловленных заболеванием желудка, кишечника, печени и поджелудочной железы. Также дефицит в пище белков, витамина А и витаминов группыВ ускоряет развитие С-гиповитаминоза. Имеет значение и сезонный фактор: в зимне-весенний период меньше овощей и фруктов, а содержание в них витамина С снижено.

Правильная кулинарная обработка фруктов и особенно овощей (длительная термическая обработка, чрезмерно долгая варка, варка в открытой посуде или в присутствии солей железа и меди, которые могут выделяться из посуды, долгое хранение в воде) ускоряет окисление аскорбиновой кислоты.

Для С-витаминной недостаточности характерны следующие признаки: снижение физической и умственной работоспособности, сопротивляемости инфекциям, вялость.

1.8. Признаки избыточного содержания витамина С в организме

Споры о влиянии больших доз витамина С на здоровье человека продолжаются и по сей день. Считается, что "ударные" дозы приемлемы только при лечении отдельных заболеваний или проведении профилактики в период эпидемий.

Большие дозы витамина С, рекомендуемые Л.Полингом, как показала практика, оказывают на организм неблагоприятное воздействие. Уже доза 1-1,5 г в сутки может вызвать бессонницу, беспокойство, чувство жара, головную боль, повышение артериального давления, повышается вероятность образования камней в почках, нарушения выработки гормонов надпочечниками. Может и угнетаться выработка инсулина. Усиливаются тканевое дыхание и интенсивность азотистого обмена, кроме того, отмечено, что при приеме больших доз аскорбиновой кислоты усвоение ее практически не увеличивается — весь избыток витамина выводится с мочой. Следует учитывать, что обезвреживание избытка витамина и его выведение из организма требуют дополнительного расхода энергии, таким образом, избыток амина С небезразличен для организма.

II. Практическая часть

2.1. Титрование как метод количественного анализа

Изучив достаточное количество литературы по данному вопросу, меня заинтересовало содержание витамина С в различных соках и других продуктах. Это и стало предметом моего исследования. Для анализа содержания витамина С я выбрал метод титрования.

Титрование – определение концентрации раствора добавлением к нему другого раствора известной концентрации. Титрующий раствор (титрант) приливают из бюретки в исследуемый раствор, находящийся в конической колбе, до тех пор, пока не завершится химическая реакция между растворами. Как правило, содержание кислот определяется методом кислотно-основного титрования в присутствии индикатора. Конечная точка титрования – признак завершения титрования обнаруживается по изменению окраски индикатора.

Но определить аскорбиновую кислоту с помощью щелочи невозможно, т.к. в разных плодовых соках кроме витамина С, есть еще множество других кислот – лимонная, яблочная, винная и другие. И отличить одну кислоту от другой с помощью щелочи не удается.

Однако у аскорбиновой кислоты есть свойство, которого нет у остальных кислот: быстрая реакция с йодом:

C6H8O+ I→ C6H6O+ 2HI

Один моль аскорбиновой кислоты (176 г) реагирует с одним молем йода (254 г). Аскорбиновая кислота превращается в дегидроаскорбиновую кислоту.

В основе йодометрического титрования лежат свойства йода и йодид-иона. Свободный йод ведет себя как окислитель: I+ 2e → 2I– 

А йодид-ионы (I–) отдают свои электроны окислителям  и играют роль восстановителей: 2I– + 2e → I20 

Если какой-нибудь восстановитель (в нашем случае аскорбиновую кислоту)

титровать йодом в присутствии крахмала, то после окончания титрования избыточная капля йода вызовет неисчезающую синюю окраску.

2.2. Индикатор йодометрического титрования

Кипячением суспензии крахмала в воде получают коллоидный раствор, используемый в иодометрии как индикатор. Высокая чувствительность крахмала к водному раствору йода еще более увеличивается в присутствии иодида калия, но с повышением температуры она сильно понижается.

Для приготовления индикатора необходимо взять 2 г крахмала, растереть с водой и полученную кашицу влить в 0,5 л кипящей дистиллированной воды, кипятить 2-3 минуты, дать остыть (жидкость должна быть прозрачной, без комочков крахмала). Правильно приготовленный индикатор дает с каплей 0,1 н. раствора йода чистую синюю окраску.

2.3. Измерительная посуда, ее проверка и работа с ней

Рис . 1        Рис. 2        Рис. 3

Рис. 1                                           Рис. 2                                    Рис. 3

В титриметрии используют бюретки, пипетки и мерные колбы.

С помощью бюретки отсчитывают объемы титранта, израсходованного на титрование; большие деления нанесены через миллилитр, малые — через 0,1 мл. Наиболее распространены бюретки с резиновым затвором (рис.2), но для титрования растворами окислителейразрушающими резину, служат бюретки со стеклянными кранами (рис 1).

Бюретку моют, добиваясь, чтобы вода стекала, не оставляя капель, и 2—3 раза ополаскивают раствором титранта. Пользуясь воронкой, наполняют бюретку титрантом выше нулевого деления, заполняют оттянутую трубку, чтобы в ней не оставалось воздуха. Обязательно убирают воронку и, выпуская лишний раствор, устанавливают нижний мениск его на нулевом делении. Затраченный объем титранта определяют по изменению положения мениска с точностью до сотых долей миллилитра (рис. 3). Глаз при отсчете держат точно на уровне жидкости. Иначе, как показано на рисунке, отсчет будет неправильным. Позади бюретки помещают лист белой бумаги, благодаря чему голубовато-зеленый мениск выступает явственнее, а отсвет не мешает выполнению отсчета. Все титрования начинают с нулевого деления шкалы, при этом компенсируются погрешности калибрования бюретки. Титрант выпускают из бюретки не быстрее 3—4 капель в секунду, иначе он не будет вовремя стекать и отсчет окажется неверным.

Страницы:← предыдущая1234следующая →

Оставьте комментарий