Макро и микро мир


Микро, Макро, Мега миры

Микромир – это молекулы, атомы, элементарные частицы — мир предельно малых, непосредственно не наблюдаемых микрообъектов, пространственная разномерность которых исчисляется от 10—8 до 10—16 см, а время жизни — от бесконечности до 10-24 с.

Макромир — мир устойчивых форм и соразмерных человеку величин, а также кристаллические комплексы молекул, организмы, сообщества организмов; мир макрообъектов, размерность которых соотносима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километрах, а время — в секундах, минутах, часах, годах.

Мегамир — это планеты, звездные комплексы, галактики, метагалактики – мир огромных космических масштабов и скоростей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и миллиардами лет.

И хотя на этих уровнях действуют свои специфические закономерности, микро-, макро — и мегамиры теснейшим образом взаимосвязаны.

На микроскопическом уровне физика сегодня занимается изучением процессов, разыгрывающихся на длинах порядка 10 в минус восемнадцатой степени см., за время — порядка 10 в минус двадцать второй степени с. В мегамире ученые с помощью приборов фиксируют объекты, удаленные от нас на расстоянии около 9-12 млрд. световых лет.

Микромир. Демокритом в античности была выдвинута Атомистическая гипотеза строения материи, позже, в XVIII в. была возрождена химиком Дж. Дальтоном, который принял атомный вес водорода за единицу и сопоставил с ним атомные веса других газов. Благодаря трудам Дж. Дальтона стали изучаться физико-химические свойства атома. В XIX в. Д. И. Менделеев построил систему химических элементов, основанную на их атомном весе.

В физику представления об атомах как о последних неделимых структурных элементах материи пришли из химии. Собственно физические исследования атома начинаются в конце XIX в., когда французским физиком А. А. Беккерелем было открыто явление радиоактивности, которое заключалось в самопроизвольном превращении атомов одних элементов в атомы других элементов.

История исследования строения атома началась в 1895 г. благодаря открытию Дж. Томсоном электрона — отрицательно заряженной частицы, входящей в состав всех атомов. Поскольку электроны имеют отрицательный заряд, а атом в целом электрически нейтрален, то было сделано предположение о наличии помимо электрона и положительно заряженной частицы. Масса электрона составила по расчетам 1/1836 массы положительно заряженной частицы.

Существовало несколько моделей строения атома.

В 1902 г. английский физик У. Томсон (лорд Кельвин) предложил первую модель атома — положительный заряд распределен в достаточно большой области, а электроны вкраплены в него, как «изюм в пудинг».

В 1911 г. Э. Резерфорд предложил модель атома, которая напоминала солнечную систему: в центре находится атомное ядро, а вокруг него по своим орбитам движутся электроны.

Ядро имеет положительный заряд, а электроны — отрицательный. Вместо сил тяготения, действующих в Солнечной системе, в атоме действуют электрические силы. Электрический заряд ядра атома, численно равный порядковому номеру в периодической системе Менделеева, уравновешивается суммой зарядов электронов — атом электрически нейтрален.

Обе эти модели оказались противоречивы.

В 1913 г. великий датский физик Н. Бор применил принцип квантования при решении вопроса о строении атома и характеристике атомных спектров.

Модель атома Н. Бора базировалась на планетарной модели Э. Резерфорда и на разработанной им самим квантовой теории строения атома. Н. Бор выдвинул гипотезу строения атома, основанную на двух постулатах, совершенно несовместимых с классической физикой:

1) в каждом атоме существует несколько стационарных состояний (говоря языком планетарной модели, несколько стационарных орбит) электронов, двигаясь по которым электрон может существовать, не излучая;

2) при переходе электрона из одного стационарного состояния в другое атом излучает или поглощает порцию энергии.

В конечном итоге точно описать структуру атома на основании представления об орбитах точечных электронов принципиально невозможно, поскольку таких орбит в действительности не существует.

Теория Н. Бора представляет собой как бы пограничную полосу первого этапа развития современной физики. Это последнее усилие описать структуру атома на основе классической физики, дополняя ее лишь небольшим числом новых предположений.

Создавалось впечатление, что постулаты Н. Бора отражают какие-то новые, неизвестные свойства материи, но лишь частично. Ответы на эти вопросы были получены в результате развития квантовой механики. Выяснилось, что атомную модель Н. Бора не следует понимать буквально, как это было вначале. Процессы в атоме в принципе нельзя наглядно представить в виде механических моделей по аналогии с событиями в макромире. Даже понятия пространства и времени в существующей в макромире форме оказались неподходящими для описания микрофизических явлений. Атом физиков-теоретиков все больше и больше становился абстрактно-ненаблюдаемой суммой уравнений.

Постнеклассическая физическая картина мира — обобщённое физическое представление о природе, включающее в себя понятия, принципы, гипотезы, теории физики, сформировавшееся в последние три десятилетия XX века и первые два десятилетия XXI века.

Материальность мира и его единство

Окружающий нас мир представляет собой обладающую неисчерпаемым множеством свойств материю, существующую в многообразных, взаимосвязанных и взаимопревращающихся формах. В едином материальном мире можно выделить три основные структурные области, различающиеся между собой по пространственной протяженности их физических объектов и процессов, преимущественным типам фундаментальных взаимодействий, основным образующим их структурным элементам материи и по характеру их основных физических закономерностей. Это микромир, макромир и мегамир[1].

Микромир

Пространственная протяжённость порядка м; основные типы взаимодействия -электромагнитное, сильное (ядерное), слабое; основные структурные уровни материи — молекулы, атомы, ядра атомов, элементарные частицы; описывается законами квантовой механики и теории относительности.

В диапазоне расстояний м свойства микромира изучает молекулярная и атомная физика; явления на расстояниях изучают ядерная физика и физика частиц низких энергий; физика высоких энергий изучает явления на расстояниях м[2].

Макромир

Пространственная протяжённость порядка м; основные виды взаимодействия – электромагнитное, гравитационное; основные структурные уровни материи – макротела, макрополя, космические объекты (планеты солнечной системы и их спутники); при малых скоростях описывается законами классической механики и при больших скоростях – законами теории относительности.

На уровне макромира выделяют два основных вида материи – вещество и поле. Электромагнитное и гравитационное поля в отличие от вещества не имеют массы покоя и могут распространяться лишь с одной определённой скоростью – скоростью света. Структурными элементами вещества и поля являются элементарные частицы, основной чертой которых является их взаимопревращаемость. Общей чертой всех объектов макромира является корпускулярно-волновой дуализм, единство прерывности и непрерывности (двойственная природа света, волновые свойства частиц и т.д.).

Мегамир

Пространственная протяжённость более м (100 млн.

Микро, макро и мегамиры

световых лет); основные типы взаимодействия — тёмная энергия и гравитационное; основные структурные уровни материи — звёздные скопления и ассоциации, межзвёздная материя, галактики, метагалактики, чёрные дыры, тёмная материя, тёмная энергия; описывается законами общей теории относительности. Мегамир изучается космологией.

Согласно теории раздувающейся Вселенной, после Большого взрыва наступила фаза почти мгновенного раздувания, сопровождавшаяся расщеплением Правселенной на множество отдельных Вселенных, различающимися всеми фундаментальными константами, которые определяют свойства мира. Согласно квантовой космологии, изучающей физические явления сразу после Большого взрыва, и физики чёрных дыр, свойства микромира и мегамира взаимосвязаны законами физики элементарных частиц[3].

Физика чёрных дыр является междисциплинарным научным направлением, объединяющим концепции общей теории относительности, физики элементарных частиц, космологии, термодинамики.

Движение материи

Материи в любой форме присуще движение. Формы движения материи многообразны (механическая, тепловая, электромагнитная, ядерная, взаимопревращение элементарных частиц), взаимопревращаемы, но не сводимы друг к другу, так как каждая из форм обладает своей спецификой. Движение материи несотворимо и неуничтожимо, как и сама материя, что выражается в существовании законов сохранения массы, импульса, энергии, заряда и др. Движение материи влияет на свойства материальных объектов. Каждой форме движения присущи свои специфические закономерности. Например, законы движения макротел неприменимы к движению микрочастиц.

Пространство и время

Пространство и время — это не самостоятельные субстанции, а лишь формы существования материи и неотделимы от неё. Пространство и время имеют ряд свойств (однородность пространства и времени, изотропность пространства, необратимость времени и т.д.). Пространственно-временные характеристики относительны и определяются движением материи, что вытекает из специальной теории относительности (преобразования Лоренца). Пространство и время связаны друг с другом (инвариантность интервала СТО), образуя единую форму существования материи. Свойства пространства и времени определяются материей (влияние поля тяготения на геометрию пространства и ритм времени, определяемое уравнениями Эйнштейна ОТО).

Причинность и закономерность

В мире все явления причинно обусловлены и протекают в соответствии с объективными физическими законами. Причинность в физике может проявляться в механистической и вероятностной формах. Соответственно и закономерности в физике могут быть динамическими (классическая физика) и статистическими (квантовая физика, термодинамика).

См. также

Примечания

Литература

  • Мощанский В. Н. Формирование мировоззрения учащихся при изучении физики. — М.: Просвещение, 1976. — 157 с. — 80 000 экз.
  • Голубинцев В. А., Данцев А. А. , Любченко В. С. Философия для технических вузов. — Ростов-на-Дону: Феникс, 2003. — 640 с. — 5000 экз. — ISBN 5-222-03736-3.
  • Кузнецов Б.Г. Идеалы современной науки. — М: Наука, 1983. — 254 с. — 6150 экз.
  • М.А. Ельяшевич, Д.Н. Трифонов, В.И. Гольданский. Физика XX века. Развитие и перспективы. — М: Наука, 1984. — 336 с. — 4750 экз.
  • ред. Мелюхин С.Т. Философские проблемы естествознания. — М.: Высшая школа, 1985. — 400 с. — 16 000 экз.

CC© wikiredia.ru

1.ВВЕДЕНИЕ

Естественные науки, начав изучение материального мира с наиболее простых непосредственно воспринимаемых человеком ма­териальных объектов, переходят далее к изучению сложнейших объектов глубинных структур материи, выходящих за пределы че­ловеческого восприятия и несоизмеримых с объектами повседнев­ного опыта. Применяя системный подход, естествознание не просто выде­ляет типы материальных систем, а раскрывает их связь и соот­ношение.

В науке выделяются три уровня строения материи:

  • Макромир мир макрообъектов, размерность которых со­относима с масштабами человеческого опыта: пространственные величины выражаются в миллиметрах, сантиметрах и километ­рах, а время — в секундах, минутах, часах, годах.

  • Микромир — мир предельно малых, непосредственно не на­блюдаемых микрообъектов, пространственная разномерность ко­торых исчисляется от десяти в минус восьмой степени до десяти в минус шестнадцатой степени см, а время жизни — от бесконечности до десяти в минус двадцать четвертой степени сек.

  • Мегамир — мир огромных космических масштабов и скоро­стей, расстояние в котором измеряется световыми годами, а время существования космических объектов — миллионами и мил­лиардами лет.

И хотя на этих уровнях действуют свои специфические зако­номерности, микро-, макро- и мегамиры теснейшим образом взаи­мосвязаны.

2.МАКРОМИР: концепции классического естествознания.

В истории изучения природы можно выделить два этапа: донаучный и научный.

Донаучный, или натурфилософский, охватываем период oт античности до становления экспериментального естествознания в XVI—XVI1 вв. В этот период учения о природе носили чисто натурфилософский характер, наблюдаемые природные явления объяснялись на основе умозрительных философских принципов.

Наиболее значимой для последующего развития естествен­ных наук была концепция дискретного строения материи — атомизм, согласно которому все тела состоят из атомов — мельчайших в мире частиц.

Античный атомизм был первой теоретической программой объяснения целого как суммы отдельных составляющих его час­тей. Исходными началами в атомизме выступали атомы и пус­тота. Сущность протекания природных процессов объяснилась на основе механического взаимодействия атомов, их притяже­ния и отталкивания. Механическая программа описания при­роды, впервые выдвинутая в античном атомизме, наиболее полно реализовалась в классической механике, со становления которой начинается научный этап изучения природы.

Поскольку современные научные представления о струк­турных уровнях организации материи были выработаны в ходе критического переосмысления представлений классической науки, применимых только к объектам макроуровня, то начи­нать исследование нужно с концепций классической физики.

Формирование научных взглядов на строение материи от­носится к XVI в., когда Г.Галилеембыла заложена основа пер­вой в истории науки физической картины мира — механиче­ской. Он не просто обосновал гелиоцентрическую систему Н. Коперникаи открыл закон инерции, а разработал методо­логию нового способа описания природы — научно-теорети­ческого. Суть его заключалась в том, что выделялись только некоторые физические и геометрические характеристики, кото­рые становились предметом научного исследования. Выделение отдельных характеристик объекта позволяло строить теоретические модели и проверять их в условиях научного эксперимента. Эта методологическая концепция, впервые сформулированная Галилеем в труде "Пробирные весы", оказала решающее влияние на становление классического естествознания.

И. Ньютон, опираясь на труды Галилея, разработал строгую научную теорию механики, описывающую и движение небес­ных тел, и движение земных объектов одними и теми же зако­нами. Природа рассматривалась как сложная механическая система.

В рамках механической картины мира, разработанной И. Ньютоном и его последователями, сложилась дискретная (корпускулярная) модель реальности Материя рассматривалась как вещественная субстанция, состоящая из отдельных частиц — атомов или корпускул. Атомы абсолютно прочны, неделимы, непроницаемы, характеризуются наличием массы и веса. Существенной характеристикой ньютоновского мира было трехмерное пространство евклидовой геометрии, которое абсо­лютно постоянно и всегда пребывает в покое. Время представ­лялось как величина, не зависящая ни от пространства, ни от материи.

Философское обоснование механическому пониманию при­роды дал Р. Декартс его концепцией абсолютной дуальности (независимости) мышления и материи, из которой следовало, что мир можно описать совершенно объективно, без учета чело­века-наблюдателя. Это убеждение, глубоко созвучное взглядам Ньютона, на десятилетия вперед определило направленность развития естественных наук.

Итогом ньютоновской картины мира явился образ Все­ленной как гигантского и полностью детерминированного механизма, где события и процессы являют собой цепь взаимозависимых причин и следствий. Отсюда и вера в то, что теоретически можно точно реконструировать любую про­шлую ситуацию во Вселенной или предсказать будущее с аб­солютной определенностью. И.Р.Пригожинназвал эту веру в безграничную предсказуемость "основополагающим мифом классической науки".

Механистический подход к описанию природы оказался не­обычайно плодотворным. Вслед за ньютоновской механикой были созданы гидродинамика, теория упругости, механическая теория тепла, молекулярно-кинетическая теория и целый ряд других, в русле которых физика достигла огромных успехов. Однако были две области — оптических и электромагнитных явлений, которые не могли быть полностью объяснены в рам­ках механистической картины мира.

Разрабатывая оптику, И. Ньютон, следуя логике своего учения, считал свет потоком материальных частиц — кор­пускул. В корпускулярной теории света И. Ньютона утвер­ждалось, что светящиеся тела излучают мельчайшие части­цы, которые движутся в согласии с законами механики и вызывают ощущение света, попадая в глаз. На базе этой теории И. Ньютоном было дано объяснение законам отра­жения и преломления света.

Наряду с механической корпускулярной теорией, осуществ­лялись попытки объяснить оптические явления принципиально иным путем, а именно на основе волновой теории, сформули­рованной X.Гюйгенсом. Волновая теорияустанавливала анало­гию между распространением света и движением волн на по­верхности воды или звуковых волн в воздухе. В ней предпола­галось наличие упругой среды, заполняющей все пространство, светоносного эфира Распространение света рассматривалось как распространение колебаний эфира, каждая отдельная точка эфира колеблется в вертикальном направлении, а колебания всех точек создают картину волны, которая перемещается в пространстве от одного момента времени к другому. Главным аргументом в пользу своей теории X. Гюйгенс считал тот факт, что два луча света, пересекаясь, пронизывают друг друга без каких-либо помех в точности, как два ряда волн на воде.

Согласно же корпускулярной теории, между пучками изу­ченных частиц, каковыми является свет, возникали бы столк­новения или, по крайней мере, какие-либо возмущения. Исхо­дя из волновой теории X. Гюйгенс успешно объяснил отраже­ние и преломление света.

Однако против нее существовало одно важное возражение. Как известно, волны обтекают препятствия. А луч света, рас­пространяясь по прямой, обтекать препятствия не может. Если на пути луча света поместить непрозрачное тело с резкой гра­нью, то его тень будет иметь резкую границу. Однако эго воз­ражение вскоре было снято благодаря опытам Гримальди. При более тонком наблюдении с использованием увеличительных линз обнаруживалось, что на границах резких теней можно ви­деть слабые участки освещенности в форме перемежающихся светлых и темных полосок или ореолов. Это явление было на­звано дифракциейсвета. Именно открытие дифракции сделало X. Гюйгенса ревностным сторонником волновой теории света. Однако авторитет И. Ньютона был настолько высок, что кор­пускулярная теория воспринималась безоговорочно даже не­смотря на то, что на ее основе нельзя было объяснить явление дифракции

Волновая теория света была вновь выдвинута в первые де­сятилетия XIX в. английским физикомТ. Юнгоми французским естествоиспытателем О.Ж. Френелем. Т.Юнг дал объясне­ние явлению интерференции, т.е. появлению темных полосок при наложении света на свет. Суть ее можно описать с помо­щью парадоксального утверждения, свет, добавленный к свету, не обязательно дает более сильный свет, но может давать более слабый и даже темноту. Причина этого заключается в том, что согласно волновой теории, свет представляет собой не поток материальных частиц, а колебания упругой среды среды, или волно­вое движение. При наложении друг на друга цепочек волн в противоположных фазах, где гребень одной волны совмещается со впадиной другой, они уничтожают друг друга, в результате чего появляются темные полосы.

Другой областью физики, где механические модели оказа­лись неадекватными, была область электромагнитных явлений. Эксперименты английского естествоиспытателя М.Фарадеяи теоретические работы английского физика Дж.К. Максвеллаокончательно разрушили представления ньютоновской физики о дискретном веществе как единственном виде материи и по­ложили начало электромагнитной картине мира.

Явление электромагнетизма открыл датский естествоис­пытатель Х.К. Эрстед, который впервые заметил магнитное действие электрических токов. Продолжая исследования в этом направлении, М.Фарадей обнаружил, что временное изменение в магнитных полях создает электрический ток. Ос­мысливая свои эксперименты, он ввел понятие "силовые ли­нии". М.Фарадей, обладавший талантом экспериментатора и богатым воображением, с классической ясностью представ­лял себе действие электрических сил от точки к точке в их "силовом поле". На основе своего представления о силовых ли­ниях он предположил, что существует глубокое родство элек­тричества и света, и хотел построить и экспериментально обос­новать новую оптику, в которой свет рассматривался бы как колебания силового поля. Эта мысль была необычайно смела для того времени, но она была достойна исследователя, кото­рый считал, что только тот находит великое, кто исследует ма­ловероятное.

Фарадей пришел к выводу, что учение об электричестве и оптика взаимосвязаны и образуют единую пунктом исследований Дж.К. Максвелла, заслуга которого состоит в математической разработке идей М. Фарадея о магнетизме и электричестве. Используя высоко­развитые математические методы, Максвелл "перевел" модель силовых линий Фарадея в математическую формулу. Понятие "поле сил" первоначально складывалось как вспомогательное математическое понятие. Дж.К. Максвелл придал ему физиче­ский смысл и стал рассматривать поле как самостоятельную физическую реальность. "Электромагнитное поле — это та часть пространства, которая содержит в себе и окружает тела, нахо­дящиеся в электрическом или магнитном состоянии"1. Обоб­щив установленные ранее экспериментальным путем законы электромагнитных явлений (Кулона, Ампера, Био-Савара) и открытое М. Фарадеем явление электромагнитной индукции, Максвелл чисто математическим путем нашел систему диффе­ренциальных уравнений, описывающих электромагнитное поле. Эта система уравнений дает в пределах своей применимости полное описание электромагнитных явлений и представляет собой столь же совершенную и логически стройную теорию, как и система ньютоновской механики.

Из уравнений следовал важнейший вывод о возможности самостоятельного существования поля, не "привязанного" к электрическим зарядам. В дифференциальных уравнениях Мак­свелла вихри электрического и магнитного полей определяются производными по времени не от своих, а от чужих полей: элек­трическое — от магнитного и, наоборот, магнитное — от элек­трического.

14. Структурные уровни организации материи (микро-, макро- и мегамир).

Поэтому если меняется со временем магнитное по­ле, то существует и переменное электрическое поле, которое в свою очередь ведет к изменению магнитного поля. В результате происходит постоянное изменение векторов напряженности электрического и магнитного полей, т.е. возникает переменное электромагнитное поле, которое уже не привязано к заряду, а отрывается от него, самостоятельно существуя и распространя­ясь в пространстве. Вычисленная им скорость распространения электромагнитного поля оказалась равна скорости света. А ис­ходя из этого Максвелл смог заключить, что световые волны представляют собой электромагнитные волны. Единая сущность света и электричества, которую М. Фарадей предположил в 1845 г., а Дж.К. Максвелл теоретически обосновал в 1862 г., была экспериментально подтверждена немецким физиком Г. Герцомв 1888 г.

Страницы: следующая →

1234Смотреть все

Похожие страницы:

  1. Структурныеуровниорганизацииматерии (2)

    Реферат >> Биология

    Структурныеуровниорганизацииматерии В самом общем виде материя … собой. Границы микро— и макромира … в макро-, ни в мегамире. 2. Развитие структурной химии Многочисленные … литературы: 1. Горелов А.А. «Концепции современного естествознания », М.: Высшее …

  2. Структурныеуровниорганизации живой материи

    Реферат >> Биология

    Структурныеуровниорганизации живой материи Живой мир чрезвычайно многообразен. Обычно выделяют следующие структурныеуровни … всех известных структурныхуровнях (микро, макро, и мегамир) трёхмерным. … две последние концепции. Концепция панспермии, согласно …

  3. Концепции современного естествознания (33)

    Реферат >> Биология

    … Она включает объекты микро-, макро— и мегамиров. В более популярном … знание от псевдонаучного. Структурныеуровниорганизацииматерии. Развитие – это … с концепцией иерархии качественно своеобразных структурныхуровней материальной организации, выступающих …

  4. Концепции современного естествознания (27)

    Лекция >> Биология

    … проблему с разных сторон. Современные концепции – это освещение наиболее перспективных направлений … к фундаментальным наукам: Поддержка высокого уровня знаний в данной области науки. … научных результатов. На каждом уровне научного познания свой метод: …

  5. Концепции современного естествознания (28)

    Реферат >> Биология

    … ; корпускулярная и континуальная концепция описания природы; порядок и беспорядок в природе; хаос; структурныеуровниорганизацииматерии; микро-, макро— и мегамиры; пространство, время …

Хочу больше похожих работ…

МАКРОМИР И МИКРОМИР – две основные области материального мира, кардинально различающиеся характером своих закономерностей.

Микро, Макро, Мега миры

Противопоставление макромира и микрокосмоса восходит к древнейшим натурфилософским концепциям макрокосмоса и микрокосмоса. Современные представления о макромире и микромире сложились в ходе становления квантовой теории и ее осмысления: объекты исследования доквантовой физики составляют макромир, а объекты, на базе которых разрабатывается квантовая теория, составляют микромир. Квантовая теория создавалась как теория структуры и свойств атома и процессов атомного масштаба; ныне же она лежит в основе физики элементарных частиц. С точки зрения представлений классической физики, законы квантовой теории оказались весьма странными и парадоксальными, что и определило становление концепции об особом своеобразном физическом мире. Высказывается мнение, что квантовая теория представляет такой «плод человеческой мысли, который более всякого другого научного достижения углубил и расширил наше понимание мира» (Вайскопф В. Физика в двадцатом столетии. М., 1977, с. 34). Важнейшими особенностями квантовых представлений, позволяющими говорить об особом мире физических явлений, являются корпускулярно-волновой дуализм, принципиально вероятностный характер процессов микромира и относительность свойств микрообъекта, фиксируемых на макроуровне.

Исторически проникновение науки в область микропроцессов приводило к разработке научных теорий большой степени общности. Проникновение в структуру вещества привело к разработке классической статистической физики, а анализ глубинных структур наследственности – к созданию генной теории. Познание атома породило квантовую теорию – наиболее фундаментальную в современной физике. «Микрофизика вчера, сегодня и, нужно думать, завтра, – как отметил отечественный физик В.Гинзбург, – была, есть и будет передним краем физики и всего естествознания» (Гинзбург В. О перспективах развития физики и астрофизики в конце 20 в. – Физика 20 в. Развитие и перспективы. М., 1984, с. 299). Представления о макромире и микромире взаимодополняют и взаимообусловливают друг друга. Знание свойств и законов микромира позволяет раскрыть свойства и структуры объектов макромира, а знание макромира позволяет раскрыть богатство внутренних возможностей объектов микромира.

Развитие физики микромира преобразует и основные формы теоретического выражения знаний. В частности, при переходе от классической физики к физике микромира произошли изменения в нашем понимании элементарного – переход от представлений о бесструктурных атомах (материальных точек) к представлениям об элементарных событиях как о некоторых далее неразложимых (бесструктурных) актах взаимодействия. И теория относительности, и особенно квантовая теория в своих построениях исходят из понятия события, представляющего собою бесструктурный элементарный объект.

Как сказал отечественный физик А.Д.Александров, имея в виду структуру теории относительности: «Простейший элемент мира – это то, что называется событием. Оно представляет собою «точечное» явление вроде мгновенной вспышки точечной лампы или, пользуясь наглядными представлениями о пространстве и времени, явление, протяжением которого в пространстве и во времени можно пренебречь. Словом, событие аналогично точке в геометрии, и, подражая определению точки, данному Эвклидом, можно сказать, что событие – это явление, часть которого есть ничто, оно есть «атомарное» явление. Всякое явление, всякий процесс представляется как некоторая связная совокупность событий. С этой точки зрения весь мир рассматривается как множество событий» (Александров А.Д. О философском содержании теории относительности. – Эйнштейн и философские проблемы физики 20 в. М., 1979, с. 113). Анализу перехода от языка объектов к языку событий в ходе становления современной физики принципиальное значение придавал Б.Рассел (см.: Рассел Б. Человеческое познание. М., 1957. с. 358 и 497). Можно, т.о., утверждать, что мир макрофизики есть мир, построенный из объектов, а мир микрофизики есть мир, образованный из событий.

В современной физике проблема элементарной сущности (как далее неразложимого, бесструктурного элемента) во многом остается открытой. Можно предположить, что при дальнейшем проникновении науки на глубинные уровни строения материи вопрос о простейшем, бесструктурном элементе изменит свой смысл. Исходные явления физического мира с самого начала следует рассматривать как нечто сложное, т.е. системным образом; при этом само понятие системы выступает как первичное, фундаментальное. Тем самым изменится и характер теоретических построений в фундаментальных областях физики.

Ю.В.Сачков

 

Оставьте комментарий