Кто открыл закон сохранения энергии


ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ

В связи с открытием фундаментального физического явления – электромагнитной индукции, на основе которого получили развитие многие ветви современной электротехники, уместно рассмотреть здесь историю другого, еще более значительного открытия – закона сохранения и превращения энергии [1.1; 1.6].

Ученые и практики всех времен обращались к исследованиям различных энергетических процессов и предпринимали попытки обобщений, в которых содержались элементы формулировки закона сохранения и превращения энергии. Если обратиться к истории открытия закона, то термин «энергия» появился лишь на последнем этапе истории великого закона. Кроме того, необходимо учесть, что основные достижения физики, химии и биологии, позволившие сделать действительное обобщение, стали известны только с начала XIX в.

Еще мыслители древности (Демокрит, Эпикур) утверждали вечность и неуничтожимость материи и движения. Повседневная практическая деятельность требовала познаний законов движения, прежде всего единственно известного – механического. И поэтому не случайно, что закон сохранения энергии начинал выкристаллизовываться в рамках механики. В 1633 г. в «Трактате о свете» идея сохранения движения была сформулирована известным французским ученым Рене Декартом (1596–1650 гг.): «Когда одно тело сталкивается с другим, оно может сообщить ему лишь столько движения, сколько само одновременно теряет, а отнять от него лишь столько, на сколько увеличит собственное движение». Эта идея получила дальнейшее развитие у немецкого ученого Готфрида Вильгельма Лейбница (1646–1716 гг.) в его законе сохранения живых сил.

После классических работ Исаака Ньютона (1643–1727 гг.) и Готфрида Лейбница принцип сохранения движения получил четкую формулировку в трудах М.В. Ломоносова, который решился объединить два принципа сохранения: движения и материи. Именно М.В. Ломоносову принадлежит открытие закона сохранения вещества, которое затем совершенно независимо от него повторил французский ученый Антуан Лоран Лавуазье (1743–1794 гг.). В 1744 г. М.В. Ломоносов написал ставшие знаменитыми слова «Все перемены в натуре случающиеся такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупится к другому, так ежели где убудет несколько материи, то умножится в другом месте… сей всеобщий естественный закон простирается и в самые правила движения, ибо тело, движущее своею силою другое, столько же оной у себя теряет, сколько сообщает другому, которое от него движение получает».

Так в середине XVIII столетия М.В. Ломоносовым был четко сформулирован закон сохранения массы и движения как всеобщий закон природы [1.10]. Более того, первая часть его выражения («все перемены в натуре случающиеся …») сформулирована так широко, что если бы эти слова были написаны 100 лет спустя, когда стали известны другие «перемены в натуре» – многочисленные взаимные преобразования энергии (электрической, тепловой, химической, механической), то другие формулировки закона сохранения и превращения энергии и сохранения материи были бы излишни. Но, к сожалению, и эпоха была еще не та, и научные труды М.В. Ломоносова почти 150 лет оставались неизвестными.

Чтобы можно было осмыслить качественные превращения энергии из одной ее формы в другую, должны были сложиться необходимые и достаточные научно‑технические предпосылки. Важнейшими среди этих предпосылок явились развитие учения о теплоте и теплотехническая практика. Известно, какую роль в развитии человека на заре его истории сыграл огонь. В процессе трудовой деятельности человек научился добывать огонь трением. В получении огня трением уже проявлялось качественное преобразование механической энергии в тепловую.

Установлению взаимосвязей между механической и тепловой энергией длительное время объективно препятствовала теория теплорода. Считалось, что теплород выдавливается из вещества при его сжатии, например, при сжатии газа, как сок из апельсина. Гениальные мысли М.В. Ломоносова о молекулярном движении как источнике теплоты, о кинетической природе теплоты в более широком смысле оставались вне поля зрения широкой научной общественности. Наиболее ощутимый удар по теории теплорода уже в эпоху паровых машин (1798 г.) нанесли опыты американца Бенджамина Томпсона (1753–1814 гг.), более известного в Европе под титулом графа Румфорда. При сверлении орудийных стволов в г. Мюнхене Румфорд наблюдал выделение теплоты, что, впрочем, было всем известно. Однако Румфорд сумел показать, что при этом может выделиться практически неограниченное количество теплоты. В своих опытах он принимал меры к изоляции сверла и ствола с тем, чтобы исключить поступление теплорода, этой «субстанции теплоты», откуда‑либо извне.

Но еще примерно 30 лет после опытов Румфорда теория теплорода, подправляемая и уточняемая, продолжала занимать господствующее положение в объяснениях причины возникновения теплоты. Существенно важной для понимания факта превращения одного вида движения (например, механического) в другой (например, тепловое) была мысль об эквиваленте, в частности о механическом эквиваленте теплоты.

Драматизм истории открытия закона сохранения и превращения энергии состоял в том, что практически до момента полного признания этого закона почти каждое предшествующее открытие, подтверждающее его справедливость, либо не публиковалось, либо на него не обращали должного внимания, либо оно просто встречалось в штыки официальной наукой.

Соответствующие труды М.В. Ломоносова до 1904 г. находились в забвении, а будучи в свое время опубликованными в России, не проникли в лаборатории Запада. Румфорд, поколебав устои теории теплорода, не смог ее низвергнуть, не найдя доказательств эквивалентности превращения механического движения в теплоту. Двадцативосьмилетний талантливый французский инженер Сади Карно (1796–1832 гг.) [1.1] опубликовал в 1824 г. замечательную работу «Размышление о движущей силы огня и о машинах, способных развивать эту силу», в которой изложил то, что впоследствии стали называть вторым началом термодинамики, или «принципом Карно». Но более поздние исследования, в которых С. Карно отказался от теории теплорода и определил впервые механический эквивалент теплоты, своевременно не были опубликованы, и рукописи его стали известны лишь в 1878 г.

В приложении к своей единственной книге С. Карно писал: «Тепло – это не что иное, как движущая сила, или, вернее, движение, изменившее свой вид. Это движение частиц тел. Повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно, всегда при исчезновении теплоты возникает движущая сила». По измерениям С. Карно механический эквивалент теплоты составил 370 кг∙м (напомним, что это значение составляет 427 кг∙м, или 4186 Дж).

Теоретические исследования С. Карно отвечали на конкретный вопрос, поставленный развивающейся промышленностью, как сделать тепловой двигатель более экономичным. С. Карно исходил из убеждения о невозможности осуществления вечного двигателя. Но и на его работы современники не обратили того внимания, которого эти работы заслуживали.

Исследования химических, тепловых и механических действий электрического тока, открытие явления электромагнитной индукции в первые 40 лет XIX в. послужили второй важной предпосылкой к открытию закона сохранения и превращения энергии.

В 1836 г. М. Фарадей сформулировал два закона электролиза, которыми установил связи между количеством электричества и химическими свойствами вещества.

Великий английский физик совершенно определенно подчеркивал необходимость установления эквивалентов между различными видами энергии, или, по терминологии того времени, между различными силами. Он писал: «Мы имеем много процессов, при которых внешняя форма силы может претерпевать такие изменения, что происходит явное превращение ее в другую. Так, мы можем превратить химическую силу в электрический ток, а электрический ток в химическую силу. Прекрасные опыты Т. Зеебека и Ж. Пельте показывают взаимную связь теплоты и электричества, а Г. Эрстеда и мои собственные показывают превращаемость электричества и магнетизма. Но ни в одном случае, даже с электрическим угрем и скатом, нет производства силы без соответствующего израсходования чего‑либо, что питает ее». В своем дневнике в 1837 г. М. Фарадей записал: «Нужно сравнить количество материальных сил (т.е. сил электричества, тяготения, химического сродства, сцепления и т.д.), где возможно дать выражение для их эквивалентов в той или иной форме».

Важную роль в открытии закона сохранения и превращения энергии сыграли труды Э.Х. Ленца и, в частности, открытие им закона о направлении индуцированного тока и принципа обратимости электрических машин [1.1; 1.6; 2.9; 2.10]. Важной предпосылкой к открытию закона сохранения и превращения энергии явились успехи биологии. Развеивался миф об особой «жизненной силе» в организмах человека и животных. Была установлена прямая связь между количеством потребляемой пищи и способностью производить работу.

40‑е годы XIX столетия – время широких обобщений. Решающую роль в установлении закона сохранения и превращения энергии история отводит немецким ученым Роберту Майеру (1814–1878 гг.) и Герману Гельмгольцу, а также английскому физику Джеймсу Джоулю (1818–1889 гг.) [1.1; 1.6].

Р. Майер был судовым врачом на голландском корабле, когда в 1840 г. «внезапно» ему пришла в голову мысль о законе сохранения и превращения энергии. Слово «внезапно» взято в кавычки недаром: о внезапном озарении писал впоследствии Р. Майер, но может ли быть внезапным открытие, предпосылки которого были хорошо известны выпускнику Тюбингенского университета? Внезапным был для Р. Майера исходный толчок: он обратил внимание на то, что было хорошо известно врачам, работающим постоянно в тропических широтах. Во время стоянки корабля на Яве заболел матрос, и Р. Майер, как тогда было принято, «пустил ему кровь», вскрыв вену. Каково же было его удивление, когда он увидел, что венозная кровь была не столь темной, как в умеренных широтах. Р. Майер понял, что при высокой средней температуре воздуха для поддержания жизнедеятельности и необходимой температуры организма требуется меньше питательных веществ и меньшее «сгорание» последних. Сопоставление многочисленных научных фактов из области химии, физики и биологии привело его к тому, что мысли, согласно выражению Р. Майера, пронзившие его, подобно молнии, навели на вывод о существовании всеобщего закона природы [2.11].

В 1841 г. Р. Майер написал статью «О количественном и качественном определении сил», но редактор известного в Европе физического журнала не счел нужным ее напечатать. Рукопись статьи была обнаружена в архивах редакции и опубликована лишь в 1881 г., т.е. 40 лет спустя. Следующая статья «Замечания о силах неживой природы» была опубликована в 1842 г. В этой работе Р. Майер много внимания уделяет взаимопревращениям механической работы и теплоты, не зная о соответствующем исследовании С. Карно, определяет механический эквивалент теплоты (по его данным, он равен 365 кг∙м/ккал), говорит о «неразрушимости» сил и формулирует свой принцип. Здесь же Р. Майер впервые в истории науки вкладывает в понятие «сила» смысл «энергия», не произнося еще этого слова (впрочем, слово было произнесено раньше; этим словом английский физик Томас Юнг (1773–1829 гг.) обозначил величину, пропорциональную массе и квадрату скорости движущегося тела).

Идеи Р. Майера носили столь общий и универсальный характер, что они сначала не были восприняты современниками. Его жизнь превратилась в непрерывную борьбу за утверждение своего принципа.

Классические измерения механического эквивалента теплоты провел в 1841–1843 гг. (опубликовано в 1843 г.) Д. Джоуль. По его данным, этот эквивалент составлял 460 кг∙м/ккал. Д. Джоуль также установил независимо от Э. Ленца связь между электрическим током и выделяемой теплотой (закон Джоуля – Ленца). Интересно отметить, что работу Д. Джоуля Британское общество (так называется Британская академия наук) отказалось опубликовать в полном объеме, требуя от него все новых экспериментальных уточнений.

Наконец, Г. Гельмгольц в 1847 г. в работе «О сохранении силы» дал в наиболее общем виде закон сохранения, показав, что сумма потенциальной и кинетической энергии остается постоянной. Г. Гельмгольц вывел выражение электродвижущей силы индукции исходя из закона сохранения энергии. Там же впервые дана математическая трактовка закона. Завершением длительного пути, пройденного наукой до точной формулировки закона сохранения энергии, можно считать доклад У. Томсона «О динамической теории тепла» (1851 г.).

У. Томсон в 1860 г. ввел в науку термин «энергия» в современном его смысле. К такому же толкованию термина «энергия» пришел в 1853 г. известный шотландский физик Уильям Джон Макуорн Ренкин (Ранкин) (1820–1872 гг.) – один из создателей технической термодинамики.

Изложение истории открытия закона уместно закончить словами выдающегося английского физика и общественного деятеля Джона Димонда Бернала (1901–1971 гг.), написанными 100 лет спустя: «Закон сохранения энергии … был величайшим физическим открытием середины XIX в. Он объединил много наук и находился в исключительной гармонии с тенденциями времени. Энергия стала универсальной валютой физики – так сказать золотым стандартом изменений, происходивших во вселенной…. Вся человеческая деятельность в целом – промышленность, транспорт, освещение и, в конечном счете, питание и сама жизнь – рассматривалась с точки зрения зависимости от этого одного общего термина – энергия» [2.12].

Предыдущая78910111213141516171819202122Следующая

Дата добавления: 2016-01-30; просмотров: 1032;

ПОСМОТРЕТЬ ЕЩЕ:

Закон сохранения энергии был открыт не физиком, а врачом.

В 1840 году на острове Ява судовой врач немец Роберт Майер вскрыл больному вену и… к своему ужасу обнаружил, что потекла не темная кровь, а алая! Неужели он вместо вены попал в артерию?! Испуг врача объяснялся тем, что алая кровь течет по артериям от сердца — это кровь, наполненная кислородом. А обратно, к сердцу кровь течет по венам. В венозной крови остается мало кислорода, поэтому цвет у нее темно-красный. Кровотечение же из артерии смертельно опасно.

Однако местные врачи успокоили Майера: они объяснили, что здесь, в тропиках, венозная кровь у людей такая же алая, как и артериальная.

«Почему же так происходит? — задумывается Майер. — Может, дело в том, что температура воздуха здесь почти равна температуре человеческого тела… Организму не нужно расходовать силу (в то время энергию еще называли силой!) на поддержание температуры тела, поэтому кислород остается в крови — ведь силу дает именно сгорание кислорода. Но это значит, что сила сохраняется: она только превращается из одного вида в другой, но никогда не исчезает и не появляется из ничего».

Развивая свою идею, Майер изучил все известные ему превращения энергии — кинетической в потенциальную и обратно, механической энергии во внутреннюю и внутренней энергии в механическую, рассмотрел электрическую и химическую энергии.

Независимо от Майера, но несколькими годами позже закон сохранения энергии был открыт английским физиком Джеймсом Джоулем и немецким естествоиспытателем Германом Гельмгольцем.

Все эти ученые были очень молоды, когда они совершили свое великое открытие: Майеру было 28 лет, Джоулю — 25, а Гельмгольцу — 26.

Задолго до открытий Майера, Джоуля и Гельмгольца очень близко к открытию закона сохранения энергии подошел выдающийся российский ученый Михаил Васильевич Ломоносов.

Но, к сожалению, труды Ломоносова долгое время оставались неизвестными для европейских ученых.

Идея о взаимопревращении механической и внутренней энергии была высказана, также до открытий Майера, Джоуля и Гельмгольца, физиком и инженером Томпсоном, получившим известность как граф Румфорд.

Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

Фундаментальный смысл закона сохранения энергии

Закон сохранения энергии — «фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени». Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

С фундаментальной точки зрения, согласно теореме Нётер, закон сохранения энергии является следствием однородности времени и в этом смысле является универсальным, то есть присущим системам самой разной физической природы. Другими словами, для каждой конкретной замкнутой системы, вне зависимости от её природы можно определить некую величину, называемую энергией, которая будет сохраняться во времени. При этом выполнение этого закона сохранения в каждой конкретно взятой системе обосновывается подчинением этой системы своим специфическим законам динамики, вообще говоря различающимся для разных систем.

Однако в различных разделах физики по историческим причинам закон сохранения энергии формулируется по-разному, в связи с чем говорится о сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии выражается в виде первого начала термодинамики.

Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то более правильным является его именование не законом, а принципом сохранения энергии.

С математической точки зрения закон сохранения энергии эквивалентен утверждению, что система дифференциальных уравнений, описывающая динамику данной физической системы, обладает первым интегралом движения, связанным с симметричностью уравнений относительно сдвига во времени.

Согласно теореме Нётер каждому закону сохранению ставится в соответствие некая симметрия уравнений, описывающих систему. В частности, закон сохранения энергии эквивалентен однородности времени, то есть независимости всех законов, описывающих систему, от момента времени, в который система рассматривается.

Вывод этого утверждения может быть произведён, например, на основе лагранжева формализма. Если время однородно, то функция Лагранжа, описывающая систему, не зависит явно от времени, поэтому полная её производная по времени имеет вид:

Здесь  — функция Лагранжа,  — обобщённые координаты и их первые и вторые производные по времени соответственно. Воспользовавшись уравнениями Лагранжа, заменим производные  на выражение :

Перепишем последнее выражение в виде

Сумма, стоящая в скобках, по определению называется энергией системы и в силу равенства нулю полной производной от неё по времени она является интегралом движения (то есть сохраняется).

История открытия закона сохранения и превращения энергии

В 1841 г. русский ученый Ленц и англичанин Джоуль почти одновременно и независимо друг от друга экспериментально доказали, что теплота может быть создана за счет механической работы. Джоуль определил механический эквивалент тепла. Эти и другие исследования подготовили открытие закона сохранения и превращения энергии. В 1842—1845 г.г. немецкий ученый Р. Майер сформулировал этот закон на основе обобщения данных естествознания о механическом движении, электричестве, магнетизме, химии и даже физиологии человека. Одновременно в Англии (Гров) и в Дании (Кольдинг) были высказаны аналогичные идеи. Несколько позднее этот закон разрабатывал Гельмгольц (Германия)

Воззрения на теплоту как форму движения мельчайших «нечувствительных» частиц материи высказывались еще в XVII в. Ф. Бэкон, Декарт, Ньютон, Гук и многие другие приходили к мысли, что теплота связана с движением частиц вещества []. Но со всей полнотой и определенностью эту идею разрабатывал и отстаивал Ломоносов. Однако он был в одиночестве, его современники переходили на сторону концепции теплорода, и, как мы видели, эта концепция разделялась многими выдающимися учеными XIX столетия.

Успехи экспериментальной теплофизики, и прежде всего калориметрии, казалось, свидетельствовали в пользу теплорода. Но тот же XIX в. принес наглядные доказательства связи теплоты с механическим движением. Конечно, факт выделения тепла при трении был известен с незапамятных времен. Сторонники теплоты усматривали в этом явлении нечто аналогичное электризации тел трением — трение способствует выжиманию теплорода из тела. Однако в 1798 г. Бенжамен Томпсон (1753―1814), ставший с 1790 г. графом Румфордом, сделал в мюнхенских военных мастерских важное наблюдение: при высверливании канала в пушечном стволе выделяется большое количество тепла. Чтобы точно исследовать это явление, Румфорд проделал опыт по сверлению канала в цилиндре, выточенном из пушечного металла. В высверленный канал помещали тупое сверло, плотно прижатое к стенкам канала и приводившееся во вращение. Термометр, вставленный в цилиндр, показал, что за 30 минут операции температура поднялась на 70 градусов Фаренгейта. Румфорд повторил опыт, погрузив цилиндр и сверло в сосуд с водой. В процессе сверления вода нагревалась и спустя 2,5 часа закипала. Этот опыт Румфорд считал доказательством того, что теплота является формой движения.

Опыты по получению теплоты трением повторил Дэви. Он плавил лед трением двух кусков друг о друга. Дэви пришел к выводу, что следует оставить гипотезу о теплороде и рассматривать теплоту как колебательное движение частиц материи.

По Майеру, все движения и изменения в мире порождаются «разностями», вызывающими силы, стремящиеся уничтожить эти разности. Но движение не прекращается, потому что силы неуничтожаемы и восстанавливают разности. «Таким образом, принцип, согласно которому раз данные силы количественно неизменны, подобно веществам, логически обеспечивает нам продолжение существования разностей, а значит, и материального мира». Эта формулировка, предложенная Майером, легко уязвима для критики. Не определено точно понятие «разность», неясно, что понимается под термином «сила». Это предчувствие закона, а не самый еще закон. Но из дальнейшего изложения понятно, что под силой он понимает причину движения, которое измеряется произведением массы на скорость. «Движение, теплота и электричество представляют собою явления, которые могут быть сведены к одной силе, которые измеряются друг другом и переходят друг в друга по определенным законам». Это вполне определенная и ясная формулировка закона сохранения и превращения силы, т.е. энергии.

Задавшись целью применить идеи механики в физиологии, Майер начинает с выяснения понятия силы. И здесь он вновь повторяет мысль о невозможности возникновения движения из ничего, сила — причина движения, а причина движения является неразрушимым объектом. Эта формулировка поразительно напоминает формулировку «всеобщего закона» Ломоносова, распространяемого им «и на самые правила движения». Заметим, что выдвижение Ломоносовым и Майером всеобщего закона сохранения в качестве «верховного закона природы» принято современной наукой, которая формулирует многочисленные конкретные законы сохранения в качестве основной опоры научного исследования. Майер подробно подсчитывает механический эквивалент теплоты из разности теплоемкостей газа (этот подсчет нередко воспроизводится в школьных учебниках физики) и находит его, опираясь на измерения Делароша и Берара, а также Дюлонга, определивших отношение теплоемкостей для воздуха равным 367 кгс-м/ккал.

Майер закончил развитие своих идей к 1848 г., когда в брошюре «Динамика неба в популярном изложении» он поставил и сделал попытку решить важнейшую проблему об источнике солнечной энергии. Майер понял, что химическая энергия недостаточна для восполнения огромных расходов энергии Солнца. Но из других источников энергии в его время была известна только механическая энергия. И Майер сделал вывод, что теплота Солнца восполняется бомбардировкой его метеоритами, падающими на него со всех сторон непрерывно из окружающего пространства. Он признает, что открытие сделано им случайно (наблюдение на Яве), но «оно все же моя собственность, и я не колеблюсь защищать свое право приоритета». Майер указывает далее, что закон сохранения энергии, «а также численное выражение его, механический эквивалент теплоты, были почти одновременно опубликованы в Германии и Англии». Он указывает на исследования Джоуля и признает, что Джоуль «открыл безусловно самостоятельно» закон сохранения и превращения энергии и что «ему принадлежат многочисленные важные заслуги в деле дальнейшего обоснования и развития этого закона». Но Май ер не склонен уступать свое право на приоритет и указывает, что из самих его работ видно, что он не гонится за эффектом. Это, однако, не означает отказа от прав на свою собственность.

Задолго до Джоуля исследования были начаты петербургским академиком Э.Х. Ленцем, который опубликовал свою работу в 1843 г. под заглавием «О законах выделения тепла гальваническим током». Ленц упоминает о работе Джоуля, публикация которого опередила публикацию Ленца, но считает, что, хотя его результаты в «основном совпадают с результатами Джоуля», они свободны от тех обоснованных возражений, которые вызывают работы Джоуля.

Ленц тщательно продумал и разработал методику эксперимента, испытал и проверил тангенс-гальванометр, служивший у него измерителем тока, определил применяемую им единицу сопротивления (напомним, что закон Ома к этому времени еще не вошел во всеобщее употребление), а также единицы тока и электродвижущей силы, выразив последнюю через единицы тока и сопротивления.

Ленц тщательно изучил поведение сопротивлений, в частности исследовал вопросе существовании так называемого «переходного сопротивления» при переходе из твердого тела в жидкость. Это понятие вводилось некоторыми физиками в эпоху, когда закон Ома еще не был общепризнанным. Затем он перешел к основному эксперименту, результаты которого сформулировал в следующих двух положениях: нагревание проволоки гальваническим током пропорционально сопротивлению проволоки; нагревание проволоки гальваническим током пропорционально квадрату служащего для нагревания тока. Точность и обстоятельность опытов Ленца обеспечили признание закона, вошедшего в науку под названием закона Джоуля — Ленца.

Джоуль сделал свои эксперименты по выделению тепла электрическим током исходным пунктом дальнейших исследований выяснения связи между теплотой и работой. Уже на первых опытах он стал догадываться, что теплота, выделяемая в проволоке, соединяющей полюсы гальванической батареи, порождается химическими превращениями в батарее, т. е. стал прозревать энергетический смысл закона. Чтобы выяснить далее вопрос о происхождении «джоулева тепла» (как теперь называется теплота, выделяемая электрическим током), он стал исследовать теплоту, выделяемую индуцированным током. В работе «О тепловом эффекте магнитоэлектричества и механическом эффекте теплоты», доложенной на собрании Британской Ассоциации в августе 1843 г., Джоуль сформулировал вывод, что теплоту можно создавать с помощью механической работы, используя магнитоэлектричество (электромагнитную индукцию), и эта теплота пропорциональна квадрату силы индукционного тока.

Вращая электромагнит индукционной машины с помощью падающего груза, Джоуль определил соотношение между работой падающего груза и теплотой, выделяемой в цепи. Он нашел в качестве среднего результата из своих измерений, что «количество тепла, которое в состоянии нагреть один фунт воды на один градус Фаренгейта, может быть превращено в механическую силу, которая в состоянии поднять 838 фунтов на вертикальную высоту в один фут». Переводя единицы фунт и фут в килограммы и метры и градус Фаренгейта в градус Цельсия, найдем, что механический эквивалент тепла, вычисленный Джоулем, равен 460 кгс-м/ккал. Этот вывод приводит Джоуля к другому, более общему выводу, который он обещает проверить в дальнейших экспериментах: «Могучие силы природы… неразрушимы, и… во всех случаях, когда затрачивается механическая сила, получается точное эквивалентное количество теплоты». Он утверждает, что животная теплота возникает в результате химических превращений в организме и что сами химические превращения являются результатом действия химических сил, возникающих из «падения атомов» Таким образом, в работе 1843 г. Джоуль приходит к тем же выводам, к которым ранее пришел Майер.

Джоуль продолжал свои эксперименты и в 60-х и в 70-х годах. В 1870 г. он вошел в состав комиссии по определению механического эквивалента теплоты. В состав этой комиссии входили В. Томсон, Максвелл и другие ученые. Но Джоуль не ограничился работой экспериментатора. Он решительно встал на точку зрения кинетической теории теплоты и стал одним из основоположников кинетической теории газов. Об этой работе Джоуля будет сказано позднее. В отличие от своих предшественников Гельмгольц связывает закон с принципом невозможности вечного двигателя (peгрetuum mobile). Этот принцип принимал еще Леонардо да Винчи, ученые XVII в. (вспомним, что Стевин обосновал закон наклонной плоскости невозможностью вечного движения), и, наконец, в XVIII в. Парижская Академия наук отказалась рассматривать проекты вечного двигателя.

Гельмгольц считает принцип невозможности вечного двигателя тождественным принципу, что «все действия в природе можно свести на притягательные или отталкивательные силы». Материю Гельмгольц рассматривает как пассивную и неподвижную. Для того чтобы описать изменения, происходящие в мире, ее надо наделить силами как притягательными, так и отталкивательными. «Явления природы, — пишет Гельмгольц, — должны быть сведены к движениям материи с неизменными движущими силами, которые зависят только от пространственных взаимоотношений». Разными путями шли открыватели закона сохранения и превращения энергии к его установлению. Майер, начав с медицинского наблюдения, сразу рассматривал его как глубокий всеобъемлющий закон и раскрывал цепь энергетических превращений от космоса до живого организма. Джоуль упорно и настойчиво измерял количественное соотношение теплоты и механической работы. Гельмгольц связал закон с исследованиями великих механиков XVIII в. Идя разными путями, они наряду со многими другими современниками настойчиво боролись за утверждение и признание закона вопреки противодействию цеховых ученых. Борьба была нелегкой и порой принимала трагический характер, но она окончилась полной победой. Наука получила в свое распоряжение великий закон сохранения и превращения энергии.

Закон сохранения энергии — фундаментальный закон природы, установленный эмпирически и заключающийся в том, что энергия изолированной (замкнутой) физической системы сохраняется с течением времени. Другими словами, энергия не может возникнуть из ничего и не может исчезнуть в никуда, она может только переходить из одной формы в другую.

Однако в различных разделах физики по историческим причинам закон сохранения энергии формулируется по-разному, в связи с чем говорится о сохранении различных видов энергии. Например, в термодинамике закон сохранения энергии выражается в виде первого начала термодинамики. Поскольку закон сохранения энергии относится не к конкретным величинам и явлениям, а отражает общую, применимую везде и всегда, закономерность, то более правильным является его именование не законом, а принципом сохранения энергии.

В 1841 г.

русский ученый Ленц и англичанин Джоуль почти одновременно и независимо друг от друга экспериментально доказали, что теплота может быть создана за счет механической работы. Джоуль определил механический эквивалент тепла. Эти и другие исследования подготовили открытие закона сохранения и превращения энергии. В 1842—1845 г.г. немецкий ученый Р. Майер сформулировал этот закон на основе обобщения данных естествознания о механическом движении, электричестве, магнетизме, химии и даже физиологии человека. Одновременно в Англии (Гров) и в Дании (Кольдинг) были высказаны аналогичные идеи. Несколько позднее этот закон разрабатывал Гельмгольц (Германия)Разными путями шли открыватели закона сохранения и превращения энергии к его установлению.



почему диеты не работают. Закон сохранения энергии энергия ни откуда не берется и никуда не исчезает, а только переходит из одной формы в другую

С этим файлом связано 42986 файл(ов). Среди них: и ещё 42976 файл(а).
Показать все связанные файлы
Почему диеты не работают???
Прежде всего, выясним, откуда берется энергия (т.е. калории, которые мы съедаем) и куда исчезает. Закон сохранения энергии — «энергия ни откуда не берется и никуда не исчезает, а только переходит из одной формы в другую». Из этого следует, что мы едим калории и тратим ТОЖЕ калории (неважно: яблоки, ананасы, либо мясо, бутерброд и пр) 

Баланс калорий, т.е. количество потребляемой энергии должно балансировать с потраченной энергией. Все, что не потрачено непременно отложится в жир! Если мы хотим добиться эффекта похудения, то нам нужен отрицательный баланс (но не слишком большой). Казалось бы, все просто — нужно просто ограничить приток калорий и все. Но не все так просто. Давайте разберемся, на что ежедневно затрачивается энергия:

1.Производственный оборот — это коэффициент потребляемой энергии организмом на дополнительные нужды, который зависит от физической активности человека.

Тот, кто выполняет тяжелую физическую нагрузку, имеет высокий производственный оборот. А тот, кто сидит целый день на работе, соответственно, низкий. Но это не является основным фактором сокращения жира в теле, а является лишь сопутствующим фактором.

2.Основной обмен веществ — это то количество энергии, которое требуется организму, чтобы поддерживать организм в режиме отдыха при средней температуре. Это дыхание, биение сердца, пищеварение, сохранение температуры тела, а также мышцы. Наиболее важным фактором является мускулатура. Мышечные ткани способствуют хорошему обмену веществ, препятствуя жироотложению. Наши мышцы тратят около 40 % от общей энергии в покое! Человек с хорошей мускулатурой тратит намного больше калорий, чем тот, у кого ее значительно меньше. У первого в организме работает 24-часовая «жиросжигательная машина», соответственно, у него больше шансов избежать отложений жиров, чем у второго. Поэтому тренировки на наращивание мышечной массы очень важны, так как мышцы играют большую роль в процессе обмена веществ.

Что же происходит с организмом во время диет? Дефицит калорий (слишком отрицательный баланс). На что организм реагирует отрицательно, стараясь сохранить свои «запасы». С этой целью он начинает избавляться от главного «грабителя» калорий — мышц. И в результате получается, что основной обмен веществ понижается, и организм в покое тратит намного меньше энергии, чем до диеты. А замедление метаболизма означает, что для продолжения сжигания жиров вам потребуется еще больше урезать количество потребляемых калорий. Получается замкнутый круг.…При диетах человек вынужден контролировать процесс жирообразования до конца жизни! К тому же крепкая мышечная масса заменяется вялой массой жира, а так как жир менее плотный, чем  мышцы, тело кажется еще более объемным. Ну и кому нужна такая диета?

Вывод: Не в наших интересах создавать большой дефицит калорий и доводить организм до бедственного состояния. Для поддержания хорошего обмена веществ просто необходимо заниматься силовыми тренировками и потреблять достаточное количество белка (из расчета 2гр на килограмм вашего веса в сутки), чтобы не допустить потери мышечной массы, а также избежать различных заболеваний, связанных с атрофией.

Команда Iron Systemtm
перейти в каталог файлов

ИСТОРИЯ ОТКРЫТИЯ ЗАКОНА СОХРАНЕНИЯ И ПРЕВРАЩЕНИЯ ЭНЕРГИИ

В связи с открытием фундаментального физического явления – электромагнитной индукции, на основе которого получили развитие многие ветви современной электротехники, уместно рассмотреть здесь историю другого, еще более значительного открытия – закона сохранения и превращения энергии [1.1; 1.6].

Ученые и практики всех времен обращались к исследованиям различных энергетических процессов и предпринимали попытки обобщений, в которых содержались элементы формулировки закона сохранения и превращения энергии. Если обратиться к истории открытия закона, то термин «энергия» появился лишь на последнем этапе истории великого закона. Кроме того, необходимо учесть, что основные достижения физики, химии и биологии, позволившие сделать действительное обобщение, стали известны только с начала XIX в.

Еще мыслители древности (Демокрит, Эпикур) утверждали вечность и неуничтожимость материи и движения. Повседневная практическая деятельность требовала познаний законов движения, прежде всего единственно известного – механического. И поэтому не случайно, что закон сохранения энергии начинал выкристаллизовываться в рамках механики. В 1633 г. в «Трактате о свете» идея сохранения движения была сформулирована известным французским ученым Рене Декартом (1596–1650 гг.): «Когда одно тело сталкивается с другим, оно может сообщить ему лишь столько движения, сколько само одновременно теряет, а отнять от него лишь столько, на сколько увеличит собственное движение». Эта идея получила дальнейшее развитие у немецкого ученого Готфрида Вильгельма Лейбница (1646–1716 гг.) в его законе сохранения живых сил.

После классических работ Исаака Ньютона (1643–1727 гг.) и Готфрида Лейбница принцип сохранения движения получил четкую формулировку в трудах М.В. Ломоносова, который решился объединить два принципа сохранения: движения и материи. Именно М.В. Ломоносову принадлежит открытие закона сохранения вещества, которое затем совершенно независимо от него повторил французский ученый Антуан Лоран Лавуазье (1743–1794 гг.). В 1744 г. М.В. Ломоносов написал ставшие знаменитыми слова «Все перемены в натуре случающиеся такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупится к другому, так ежели где убудет несколько материи, то умножится в другом месте… сей всеобщий естественный закон простирается и в самые правила движения, ибо тело, движущее своею силою другое, столько же оной у себя теряет, сколько сообщает другому, которое от него движение получает».

Так в середине XVIII столетия М.В. Ломоносовым был четко сформулирован закон сохранения массы и движения как всеобщий закон природы [1.10]. Более того, первая часть его выражения («все перемены в натуре случающиеся …») сформулирована так широко, что если бы эти слова были написаны 100 лет спустя, когда стали известны другие «перемены в натуре» – многочисленные взаимные преобразования энергии (электрической, тепловой, химической, механической), то другие формулировки закона сохранения и превращения энергии и сохранения материи были бы излишни. Но, к сожалению, и эпоха была еще не та, и научные труды М.В. Ломоносова почти 150 лет оставались неизвестными.

Чтобы можно было осмыслить качественные превращения энергии из одной ее формы в другую, должны были сложиться необходимые и достаточные научно‑технические предпосылки. Важнейшими среди этих предпосылок явились развитие учения о теплоте и теплотехническая практика. Известно, какую роль в развитии человека на заре его истории сыграл огонь. В процессе трудовой деятельности человек научился добывать огонь трением. В получении огня трением уже проявлялось качественное преобразование механической энергии в тепловую.

Установлению взаимосвязей между механической и тепловой энергией длительное время объективно препятствовала теория теплорода. Считалось, что теплород выдавливается из вещества при его сжатии, например, при сжатии газа, как сок из апельсина. Гениальные мысли М.В. Ломоносова о молекулярном движении как источнике теплоты, о кинетической природе теплоты в более широком смысле оставались вне поля зрения широкой научной общественности. Наиболее ощутимый удар по теории теплорода уже в эпоху паровых машин (1798 г.) нанесли опыты американца Бенджамина Томпсона (1753–1814 гг.), более известного в Европе под титулом графа Румфорда. При сверлении орудийных стволов в г. Мюнхене Румфорд наблюдал выделение теплоты, что, впрочем, было всем известно. Однако Румфорд сумел показать, что при этом может выделиться практически неограниченное количество теплоты. В своих опытах он принимал меры к изоляции сверла и ствола с тем, чтобы исключить поступление теплорода, этой «субстанции теплоты», откуда‑либо извне.

Но еще примерно 30 лет после опытов Румфорда теория теплорода, подправляемая и уточняемая, продолжала занимать господствующее положение в объяснениях причины возникновения теплоты. Существенно важной для понимания факта превращения одного вида движения (например, механического) в другой (например, тепловое) была мысль об эквиваленте, в частности о механическом эквиваленте теплоты.

Драматизм истории открытия закона сохранения и превращения энергии состоял в том, что практически до момента полного признания этого закона почти каждое предшествующее открытие, подтверждающее его справедливость, либо не публиковалось, либо на него не обращали должного внимания, либо оно просто встречалось в штыки официальной наукой.

Соответствующие труды М.В. Ломоносова до 1904 г. находились в забвении, а будучи в свое время опубликованными в России, не проникли в лаборатории Запада. Румфорд, поколебав устои теории теплорода, не смог ее низвергнуть, не найдя доказательств эквивалентности превращения механического движения в теплоту. Двадцативосьмилетний талантливый французский инженер Сади Карно (1796–1832 гг.) [1.1] опубликовал в 1824 г. замечательную работу «Размышление о движущей силы огня и о машинах, способных развивать эту силу», в которой изложил то, что впоследствии стали называть вторым началом термодинамики, или «принципом Карно». Но более поздние исследования, в которых С. Карно отказался от теории теплорода и определил впервые механический эквивалент теплоты, своевременно не были опубликованы, и рукописи его стали известны лишь в 1878 г.

В приложении к своей единственной книге С. Карно писал: «Тепло – это не что иное, как движущая сила, или, вернее, движение, изменившее свой вид. Это движение частиц тел. Повсюду, где происходит уничтожение движущей силы, возникает одновременно теплота в количестве, точно пропорциональном количеству исчезнувшей движущей силы. Обратно, всегда при исчезновении теплоты возникает движущая сила». По измерениям С. Карно механический эквивалент теплоты составил 370 кг∙м (напомним, что это значение составляет 427 кг∙м, или 4186 Дж).

Теоретические исследования С. Карно отвечали на конкретный вопрос, поставленный развивающейся промышленностью, как сделать тепловой двигатель более экономичным. С. Карно исходил из убеждения о невозможности осуществления вечного двигателя. Но и на его работы современники не обратили того внимания, которого эти работы заслуживали.

Исследования химических, тепловых и механических действий электрического тока, открытие явления электромагнитной индукции в первые 40 лет XIX в. послужили второй важной предпосылкой к открытию закона сохранения и превращения энергии.

В 1836 г. М. Фарадей сформулировал два закона электролиза, которыми установил связи между количеством электричества и химическими свойствами вещества.

Великий английский физик совершенно определенно подчеркивал необходимость установления эквивалентов между различными видами энергии, или, по терминологии того времени, между различными силами. Он писал: «Мы имеем много процессов, при которых внешняя форма силы может претерпевать такие изменения, что происходит явное превращение ее в другую. Так, мы можем превратить химическую силу в электрический ток, а электрический ток в химическую силу. Прекрасные опыты Т. Зеебека и Ж. Пельте показывают взаимную связь теплоты и электричества, а Г. Эрстеда и мои собственные показывают превращаемость электричества и магнетизма. Но ни в одном случае, даже с электрическим угрем и скатом, нет производства силы без соответствующего израсходования чего‑либо, что питает ее». В своем дневнике в 1837 г. М. Фарадей записал: «Нужно сравнить количество материальных сил (т.е. сил электричества, тяготения, химического сродства, сцепления и т.д.), где возможно дать выражение для их эквивалентов в той или иной форме».

Важную роль в открытии закона сохранения и превращения энергии сыграли труды Э.Х. Ленца и, в частности, открытие им закона о направлении индуцированного тока и принципа обратимости электрических машин [1.1; 1.6; 2.9; 2.10]. Важной предпосылкой к открытию закона сохранения и превращения энергии явились успехи биологии.

Развеивался миф об особой «жизненной силе» в организмах человека и животных. Была установлена прямая связь между количеством потребляемой пищи и способностью производить работу.

40‑е годы XIX столетия – время широких обобщений. Решающую роль в установлении закона сохранения и превращения энергии история отводит немецким ученым Роберту Майеру (1814–1878 гг.) и Герману Гельмгольцу, а также английскому физику Джеймсу Джоулю (1818–1889 гг.) [1.1; 1.6].

Р. Майер был судовым врачом на голландском корабле, когда в 1840 г. «внезапно» ему пришла в голову мысль о законе сохранения и превращения энергии. Слово «внезапно» взято в кавычки недаром: о внезапном озарении писал впоследствии Р. Майер, но может ли быть внезапным открытие, предпосылки которого были хорошо известны выпускнику Тюбингенского университета? Внезапным был для Р. Майера исходный толчок: он обратил внимание на то, что было хорошо известно врачам, работающим постоянно в тропических широтах. Во время стоянки корабля на Яве заболел матрос, и Р. Майер, как тогда было принято, «пустил ему кровь», вскрыв вену. Каково же было его удивление, когда он увидел, что венозная кровь была не столь темной, как в умеренных широтах. Р. Майер понял, что при высокой средней температуре воздуха для поддержания жизнедеятельности и необходимой температуры организма требуется меньше питательных веществ и меньшее «сгорание» последних. Сопоставление многочисленных научных фактов из области химии, физики и биологии привело его к тому, что мысли, согласно выражению Р. Майера, пронзившие его, подобно молнии, навели на вывод о существовании всеобщего закона природы [2.11].

В 1841 г. Р. Майер написал статью «О количественном и качественном определении сил», но редактор известного в Европе физического журнала не счел нужным ее напечатать. Рукопись статьи была обнаружена в архивах редакции и опубликована лишь в 1881 г., т.е. 40 лет спустя. Следующая статья «Замечания о силах неживой природы» была опубликована в 1842 г. В этой работе Р. Майер много внимания уделяет взаимопревращениям механической работы и теплоты, не зная о соответствующем исследовании С. Карно, определяет механический эквивалент теплоты (по его данным, он равен 365 кг∙м/ккал), говорит о «неразрушимости» сил и формулирует свой принцип. Здесь же Р. Майер впервые в истории науки вкладывает в понятие «сила» смысл «энергия», не произнося еще этого слова (впрочем, слово было произнесено раньше; этим словом английский физик Томас Юнг (1773–1829 гг.) обозначил величину, пропорциональную массе и квадрату скорости движущегося тела).

Идеи Р. Майера носили столь общий и универсальный характер, что они сначала не были восприняты современниками. Его жизнь превратилась в непрерывную борьбу за утверждение своего принципа.

Классические измерения механического эквивалента теплоты провел в 1841–1843 гг. (опубликовано в 1843 г.) Д. Джоуль. По его данным, этот эквивалент составлял 460 кг∙м/ккал. Д. Джоуль также установил независимо от Э. Ленца связь между электрическим током и выделяемой теплотой (закон Джоуля – Ленца). Интересно отметить, что работу Д. Джоуля Британское общество (так называется Британская академия наук) отказалось опубликовать в полном объеме, требуя от него все новых экспериментальных уточнений.

Наконец, Г. Гельмгольц в 1847 г. в работе «О сохранении силы» дал в наиболее общем виде закон сохранения, показав, что сумма потенциальной и кинетической энергии остается постоянной. Г. Гельмгольц вывел выражение электродвижущей силы индукции исходя из закона сохранения энергии. Там же впервые дана математическая трактовка закона. Завершением длительного пути, пройденного наукой до точной формулировки закона сохранения энергии, можно считать доклад У. Томсона «О динамической теории тепла» (1851 г.).

У. Томсон в 1860 г. ввел в науку термин «энергия» в современном его смысле. К такому же толкованию термина «энергия» пришел в 1853 г. известный шотландский физик Уильям Джон Макуорн Ренкин (Ранкин) (1820–1872 гг.) – один из создателей технической термодинамики.

Изложение истории открытия закона уместно закончить словами выдающегося английского физика и общественного деятеля Джона Димонда Бернала (1901–1971 гг.), написанными 100 лет спустя: «Закон сохранения энергии … был величайшим физическим открытием середины XIX в. Он объединил много наук и находился в исключительной гармонии с тенденциями времени. Энергия стала универсальной валютой физики – так сказать золотым стандартом изменений, происходивших во вселенной…. Вся человеческая деятельность в целом – промышленность, транспорт, освещение и, в конечном счете, питание и сама жизнь – рассматривалась с точки зрения зависимости от этого одного общего термина – энергия» [2.12].

Предыдущая78910111213141516171819202122Следующая

Дата добавления: 2016-01-30; просмотров: 1031;

ПОСМОТРЕТЬ ЕЩЕ:

Закон сохранения механической энергии

Механическая энергия консервативной механической системы сохраняется во времени.

Проще говоря, при отсутствии диссипативных сил (например, сил трения) механическая энергия не возникает из ничего и не может никуда исчезнуть.

Для замкнутой системы физических тел, например, справедливо равенство
Ek1 + Ep1 = Ek2 + Ep2,
где Ek1, Ep1 — кинетическая и потенциальная энергии системы какого-либо взаимодействия, Ek2, Ep2 — соответствующие энергии после.

Закон сохранения энергии — это интегральный закон. Это значит, что он складывается из действия дифференциальных законов и является свойством их совокупного действия.

Формулировка закона сохранения механической энергии.

Полная механическая энергия, т.е. сумма потенциальной и кинетической энергии тела, остается постоянной, если действуют только силы упругости и тяготения и отсутствуют силы трения.

Другие заметки по физике

Оставьте комментарий