Классификация нервных волокон по скорости проведения возбуждения


Тип волокна Функция Диаметр, мкм Скорость проведения, м/с Миелинизация
Афферентные — мышечные веретёна, сухожильные органы; эфферентные — скелетные мышцы 10-20 60-120 +
Афферентные — тактильное чувство; коллатерали Aα волокон к интрафузальным мышечным волокнам 7-15 40-90 +
Эфферентные — мышечные веретёна 4-8 15-30 +
Афферентные — температура, быстрое проведение боли 3-5 5-25 +
B Симпатические, преганглионарные; постганглионарные волокна цилиарного ганглия 1-3 3-15 прерывистая
C Симпатические, постганглионарные; афферентные — медленное проведение боли 0,3-1 0,5-2

Законы проведения возбуждения по НВ.

  • Закон анатомо-физиологической целостности.

Проведение импульсов по нервному волокну возможно лишь в том случае, если не нарушена его целостность. При нарушении физиологических свойств нервного волокна путем охлаждения, применения различных наркотических средств, сдавливания, а также порезами и повреждениями анатомической целостности проведение нервного импульса по нему будет невозможно.

  • Закон изолированного проведения возбуждения.

Существует ряд особенностей распространения возбуждения в периферических, мякотных и безмякотных нервных волокнах.

В периферических нервных волокнах возбуждение передается только вдоль нервного волокна, но не передается на соседние, которые находятся в одном и том же нервном стволе.

В мякотных нервных волокнах роль изолятора выполняет миелиновая оболочка. За счет миелина увеличивается удельное сопротивление и происходит уменьшение электрической емкости оболочки.

В безмякотных нервных волокнах возбуждение передается изолированно. Это объясняется тем, что сопротивление жидкости, которая заполняет межклеточные щели, значительно ниже сопротивления мембраны нервных волокон. Поэтому ток, возникающий между деполяризованным участком и неполяризованным, проходит по межклеточным щелям и не заходит при этом в соседние нервные волокна.

  • Закон двустороннего проведения возбуждения.Нервное волокно проводит нервные импульсы в двух направлениях – центростремительно и центробежно.В живом организме возбуждение проводится только в одном направлении. Двусторонняя проводимость нервного волокна ограничена в организме местом возникновения импульса и клапанным свойством синапсов, которое заключается в возможности проведения возбуждения только в одном направлении.
  • Закон бездекрементного проведения возбуждения. Возбуждение по нерву распространяется без затухания.

Дата добавления: 2018-01-21; просмотров: 25; Опубликованный материал нарушает авторские права? | Защита персональных данных |

Не нашли то, что искали? Воспользуйтесь поиском:

Проведение возбуждения

Конспект лекции| Резюме лекции | Интерактивный тест | Скачать конспект

» Законы проведения возбуждения по нервным волокнам
» Закономерности проведения местного и распространяющегося возбуждения
» Миелиновые и безмиелиновые нервные волокна
» Механизм проведения возбуждения по безмиелиновым нервным волокнам
» Механизм проведения возбуждения по миелиновым нервным волокнам
» Классификация нервных волокон

Возбуждение, возникнув в одном участке мембраны возбудимой клетки, обладает способностью распространяться. Длинный отросток нейрона – аксон (нервное волокно) выполняет в организме специфическую функцию проведения возбуждения на большие расстояния.

Законы проведения возбуждения по нервным волокнам

• Закон анатомической и физиологической непрерывности – возбуждение может распространяться по нервному волокну только в случае его морфологической и функциональной целостности.

•  Закон двустороннего проведения возбуждения – возбуждение, возникающее в одном участке нерва, распространяется в обе стороны от места своего возникновения. В организме возбуждение всегда распространяется по аксону от тела клетки (ортодромно).

•  Закон изолированного проведения – возбуждение, распространяющееся по волокну, входящему в состав нерва, не передается на соседние нервные волокна.

«Вверх»

Закономерности проведения местного и распространяющегося возбуждения

Электротонический потенциал (местное возбуждение)

•  распространяется по нервным волокнам с затуханием (с декрементом ), т.е. амплитуда локального ответа быстро падает с увеличением расстояния от места его возникновения;

•  вследствие затухания локальный ответ распространяется на небольшие расстояния (не более 2 см);

•  местное возбуждение распространяется пассивно, без затрат энергии клетки;

•  механизм распространения местного возбуждения аналогичен распространению электрического тока в проводниках; такой способ распространения возбуждения называют электротоническим .

Потенциал действия (распространяющееся возбуждение)

•  распространяется по нервным волокнам без затухания, амплитуда потенциала действия одинакова на любом расстоянии от места его возникновения;

•  расстояние, на которое распространяется потенциал действия, ограничено только длиной нервного волокна;

•  распространение потенциала действия – активный процесс, в ходе которого изменяется состояние ионных каналов волокна, энергия АТФ требуется для восстановления трансмембранных ионных градиентов;

•  механизм проведения потенциала действия более сложен, чем механизм распространения местного возбуждения.

«Вверх»

Миелиновые и безмиелиновые нервные волокна

Миелиновые волокна. Часть нервных волокон в ходе эмбриогенеза подвергается миелинизации: леммоциты ( шванновские клетки ) сначала прикасаются к аксону, а затем окутывают его (рис. 1, А, Б). Мембрана леммоцита наматывается на аксон наподобие рулета, образуя многослойную спираль (миелиновую оболочку) (рис. 1, В, Г). Миелиновая оболочка не является непрерывной – по всей длине нервного волокна на равном расстоянии друг от друга в ней имеются небольшие перерывы (перехваты Ранвье). В области перехватов аксон лишен миелиновой оболочки.

Рис. 1. Формирование миелиновой оболочки вокруг аксона на разных стадиях его развития (А– Г); соотношение леммоцита и безмиелиновых волокон (Д) (по Судакову, 2000)

1 – леммоцит, 2 – миелиновое волокно, 3 – миелиновая оболочка, 4 – безмиелиновое волокно

Безмиелиновые волокна. Миелинизация других волокон заканчи­вается на ранних стадиях эмбрионального развития. В леммоцит по­гружается один или несколько аксонов; он полностью или частично окружает их, но не образует многослойной миелиновой оболочки (рис.

Studepedia.org — это Лекции, Методички, и много других полезных для учебы материалов

1, Д).

«Вверх»

Механизм проведения возбуждения по безмиелиновым нервным волокнам

В состоянии покоя вся внутренняя поверхность мембраны нервного волокна несет отрицательный заряд, а наружная сторона мембраны – положительный. Электрический ток между внутренней и наружной стороной мембраны не протекает, так как липидная мембрана имеет высокое электрическое сопротивление.

Во время развития потенциала действия в возбужденном участке мембраны происходит реверсия заряда (рис. 2,А). На границе возбужденного и невозбужденного участка начинает протекать электрический ток (рис. 2, Б). Электрический ток раздражает ближайший участок мембраны и приводит его в состояние возбуждения (рис. 2, В), в то время как ранее возбужденные участки возвращаются в состояние покоя (рис. 2, Г). Таким образом, волна возбуждения охватывает все новые участки мембраны нервного волокна.

Рис. 2. Механизм распространения возбуждения по безмиелиновому нервному волокну. Объяснения – в тексте

«Вверх»

Механизм проведения возбуждения по миелиновым нервным волокнам

В миелинизированном нервном волокне участки мембраны, покрытые миелиновой оболочкой, являются невозбудимыми; возбуждение может возникать только в участках мембраны, расположенных в области перехватов Ранвье.

При развитии ПД в одном из перехватов Ранвье происходит реверсия заряда мембраны (рис. 3, А). Между электроотрицательными и электроположительными участками мембраны возникает электрический ток, который раздражает соседние участки мембраны (рис. 3, Б). Однако в состояние возбуждения может перейти только участок мембраны в области следующего перехвата Ранвье (рис.  3, В). Таким образом, возбуждение распространяется по мембране скачкообразно (сальтаторно) от одного перехвата Ранвье к другому.

Рис. 3. Механизм распространения возбуждения по миелиновому нервному волокну. Объяснения – в тексте

«Вверх»

Классификация нервных волокон

Нервные волокна различаются по диаметру и степени миелинизации. Чем больше диаметр нервного волокна и степень его миелинизации, тем выше скорость проведения возбуждения. Волокна с разной скоростью проведения выполняют различные физиологические функции. Нервные волокна подразделяются на 6 типов, характеристики которых приведены в табл. 4.1.

Таблица 4.1. Типы нервных волокон, их свойства и функциональное назначение

Тип

Диаметр (мкм)

Миелинизация

Скорость про-ведения (м/с)

Функциональное назначение

А alpha

12–20

сильная

70–120

Двигательные волокна соматической НС; чувствительные волокна проприорецепторов

А beta

5–12

сильная

30–70

Чувствительные волокна кожных рецепторов

Аgamma

3–16

сильная

15–30

Чувствительные волокна проприорецепторов

А delta

2–5

сильная

12–30

Чувствительные волокна терморецепторов, ноцицепторов

В

1–3

слабая

3–15

Преганглионарные волокна симпатической НС

С

0,3–1,3

отсутствует

0,5–2,3

Постганглионарные волокна симпатической НС; чувствительные волокна терморецепторов, ноцицепторов, некоторых механорецепторов

Нервные волокна всех групп обладают общими свойствами:

•  нервные волокна практически неутомляемы;
•  нервные волокна обладают высокой лабильностью, т. е. могут воспроизводить потенциал действия с очень высокой частотой.

«Вверх»

Нервные волокна. Классификация. Строение.

Нервные волокна представляют собой отростки нервных клеток, которые обычно покрыты оболочками.

В зависимости от строения оболочки они делятся на две основные группы:

1. Миелиновые. 2.

Классификация нервных волокон

Безмиелиновые.

Те и другие состоят из отростка нервной клетки, который располагается в центре волокна и поэтому носит название осевого цилиндра и оболочки, образованной клетками олигодендроглии, которые называются нейролеммоцитами (шванновские клетки).

Миелиновые нервные волокна

Это волокна, состоящие из осевого цилиндра, миелиновой оболочки, нейролеммы и базальной мембраны.

ЁДиаметр поперечного среза от 1 до 20 мкм.

ЁЛокализация — центральная нервная система, периферическая нервная система.

Осевой цилиндр — представляет собой отросток нервной клетки (аксон или дендрит). Осевой цилиндр состоит из нейроплазмы, покрытой мембраной — аксолеммой.

Нейроплазма — это цитоплазма нервной клетки, которая содержит продольно ориентированные нейрофиламенты и нейротубулы. В нейроплазме содержатся митохондрии, которых больше в непосредственной близости к перехватам и особенно их много в концевых аппаратах волокон.

Аксолемма — представляет продолжение клеточной оболочки нейроцита, которая обеспечивает проведение нервного импульса. Скорость проведения нервного импульса по толстому миелиновому волокну составляет от 5 до 120 м/с.

Миелиновая оболочка представляет трубку толщиной от 0,3 до 20 мкм, которая покрывает осевой цилиндр по всей длине. Отсутствует миелиновая оболочка в местах выхода отростка из перикариона, на участках терминальных разветвлений аксона и участках узловых перехватов. Перехваты соответствуют границе смежных нейролеммоцитов. Отрезок волокна, расположеный между смежными перехватами называется межузловым сегментом, а его оболочка представлена одной глиальной клеткой. Длина межузлового сегмента составляет от нескольких микрометров до нескольких миллиметров. Узловой перехват имеет размеры от 0,25 до 1мкм.

В связи с тем, что миелиновая оболочка содержит в своем составе липиды, при обработке волокна осмиевой кислотой она интенсивно окрашивается в темно-коричневый цвет. Все волокно в этом случае имеет вид однородного цилиндра, в котором на определенном расстоянии друг от друга расположены светлые линии — насечки миелина.

В процессе развития миелинового волокна осевой цилиндр, погружаясь в нейролеммоцит , прогибает его оболочку и образует глубокую складку. Эта двойная складка плазмолеммы нейтролеммоцита носит название мезоксона. Развиваясь, шванновская клетка медленно поворачивается вокруг осевого цилиндра, вследствие чего мезаксон многократно окутывает его. Под электронным микроскопом каждый завиток мезаксона виден как светлый слой, шириной около 8-12 нм, который соответствует липидным слоям двух листков плазмолеммы нейролеммоцита. По середине и по поверхности его видны тонкие темные линии, образованные молекулами белка. Насечки миелина соответствуют тем местам, где завитки мезаксона раздвинуты цитоплазмой шванновской клетки.

Оболочку одного нервного волокна образуют много нейролеммоцитов. Они контактируют между собой на участках узловых перехватов. Межузловой сегмент соответствует одной глиальной клетке.

На продольном разрезе вблизи перехвата видна область, в которой завитки мезаксона последовательно контактируют с осевым цилиндром. Места прикрепления самых глубоких завитков мезаксона наиболее удалены от перехвата, а все последующие закономерно расположены ближе к нему. Это объясняется тем, что в процессе роста осевого цилиндра и нейролеммоцитов происходит наслоение мезаксона, поэтому первые его слои короче последующих. Края двух смежных леммоцитов в области перехвата образуют кольцеобразные отростки, диаметром 50 нм, длина этих отростков различна.

Нейролемма — периферическая зона нервного волокна, содержащая оттесненную сюда цитоплазму нейролеммоцитов и их ядра.

Базальная мембрана — покрывает миелиновое волокно снаружи. Она связана с плотными тяжами коллагеновых фибрилл, которые ориентированы продольно и не прерываются в перехвате.

Предыдущая27282930313233343536373839404142Следующая

Дата добавления: 2017-01-29; просмотров: 640;

ПОСМОТРЕТЬ ЕЩЕ:

Как только в какой-либо точке нервного или мышечного волокна возникает ПД и этот участок приобретает отрицательный заряд, между возбужденными и соседними покоящимися участками волокна возникает электрический ток. В данном случае возбужденный участок мембраны действует на соседние участки как катод постоянного тока, вызывая их деполяризацию и генерируя локальный ответ. Если величина локального ответа превысит Ек мембраны, возникает ПД. В результате наружная поверхность мембраны заряжается отрицательно на новом участке. Таким способом волна возбуждения распространяется вдоль всего волокна со скоростью около 0,5-3 м/сек.

Законы проведения возбуждения по нервам.

1. Закон физиологической непрерывности. Перерезка, перевязка, а также любое другое воздействие, нарушающее целость мембраны (физиологическую, а не только анатомическую), создают непроводимость. То же возникает при тепловых и химических воздействиях.

2. Закон двустороннего проведения. При нанесении раздражения на нервное волокно возбуждение распространяется по нему в обеих направлениях ( по поверхности мембраны — во все стороны) с одинаковой скоростью. Это доказывается опытом Бабухина и подобными ему.

3. Закон изолированного проведения. В нерве импульсы распространяются по каждому волокну изолированно, т.е. не переходят с одного волокна на другое. Это очень важно, так как обеспечивает точную адресовку импульса. Связано это с тем, что электрическое сопротивление миэлиновых и швановской оболочек, а также межклеточной жидкости значительно больше, чем сопротивление мембраны нервных волокон.

Механизмы и скорость проведения возбуждения в безмякотных и мякотных нервных волокнах различны. В безмякотных возбуждение распространяется непрерывно вдоль всей мембраны от одного возбужденного участка к другому, расположенному рядом, так, как мы уже обсуждали.

В миэлиновых волокнах возбуждение распространяется только скачкообразно, перепрыгивая через участки, покрытые миэлиновой оболочкой (сальтаторно). Потенциалы действия в этих волокнах возникают только в перехватах Ранвье. В состоянии покоя наружная поверхность возбудимой мембраны всех перехватов Ранвье заряжена положительно. В момент возбуждения поверхность первого перехвата становится отрицательно заряженной по отношению к соседнему второму перехвату. Это приводит к возникновению местного (локального) электротока, который идет через окружающую волокно межклеточную жидкость, мембрану и аксоплазму от перехвата 2 к 1. Выходящий через перехват 2 ток возбуждает его, вызывая перезарядку мембраны. Теперь этот участок может возбудить следующий и т.д.

Перепрыгивание ПД через межперехватный участок возможно потому, что амплитуда ПД в 5-6 раз больше порога, необходимого для возбуждения не только следующего, но и 3-5 перехватов. Поэтому микроповреждения волокна в межперехватных участках или не одном перехвате не прекращают работы нервного волокна до тех пор, пока регенеративный явления не захватят 3 и более лежащих рядом швановские клетки.

Время, необходимое для передачи возбуждения от одного перехвата к другому, одинаково у волокон различного диаметра, и составляют 0,07 мсек. Однако поскольку длина межперехватных участков различна и пропорциональна диаметру волокна, в миэлинизированных нервах скорость проведения нервных импульсов прямо пропорциональная их диаметру.

Классификация нервных волокон. Электрический ответ целого нерва является алгебраической суммой ПД отдельных его нервных волокон. Поэтому, с одной стороны, амплитуда электрических импульсов целого нерва зависит от силы раздражителя (с ее ростом вовлекаются все новые волокна), а во-вторых, суммарный потенциал действия нерва может быть расчленен на несколько отдельных колебаний, причиной чего является неодинаковая скорость проведения импульсов по разным волокнам, составляющим целый нерв.

В настоящее время нервные волокна по скорости проведения возбуждения, длительности различных фаз ПД и строении принято разделять на три основных типа.

Волокна типа А делятся на подгруппы (альфа, бета, гамма, дельта). Они покрыты миэлиновой оболочкой. Скорость проведения у них самая большая — 70-120 м/сек. Это — двигательные волокна, от моторных нейронов спинного мозга. Остальные волокна типа А — чувствительные.

Волокна типа В — миэлиновые, преимущественно преганглионарные. Скорость проведения — 3-18 м/сек.

Волокна типа С — безмякотные, очень малого диаметра (2 мк). Скорость проведения не больше 3 м/сек. Это постганглионарные волокна симпатической нервной системы чаще всего.

ОБЩАЯ ФИЗИОЛОГИЯ

ЦЕНТРАЛЬНОЙ НЕРВНОЙ СИСТЕМЫ

Физиология центральной нервной системы (ЦНС) является наиболее сложной, но в то же время и наиболее ответственной главой физиологии, так как у высших млекопитающих и человека нервная система осуществляет функцию связи частей организма между собой, их соотношение и интеграцию, с одной стороны, и функцию связи агентов внешней среды с определенными проявлениями деятельности организма – с другой. Успехи современной науки в расшифровке всей сложности нервной системы основываются на признании единого механизма ее функционирования – рефлекса.

Рефлексы – это все акты организма, которые наступают в ответ на раздражение рецепторов и осуществляются при участии ЦНС. Впервые представление о рефлексе было сформулировано Декартом, развито Сеченовым, Павловым, Анохиным. Каждый рефлекс осуществляется благодаря деятельности определенных структурных образований нервной системы. Однако, прежде чем разбирать особенности строения рефлекторной дуги, мы должны познакомиться со строением и свойствами функциональной единицы нервной системы – нервной клеткой, нейроном.

Строение и функции нейрона.

Проведение возбуждения. Классификация нервных волокон.

Еще в прошлом веке Рамон-и-Кахал обнаружил, что любая нервная клетка имеет тело (сому), и отростки, которые по особенностям строения и функции разделяются на дендриты и аксон. Аксон у нейрона всегда только один, а дендритов может быть очень много. В 1907 г. Шеррингтон описал способы взаимодействия нейронов между собой и ввел понятие синапса. После того, как Рамон-и-Кахал показал, что дендриты воспринимают раздражение, а аксон посылает импульсы, сформировалось представление о том, что основной функцией нейрона является восприятие. переработка и посылка информации на другую нервную клетку или на рабочий орган (мышцу, железу).

Структура и размеры нейронов сильно варьируют. Диаметр их может колебаться от 4 микрон (клетки-зерна мозжечка) до 130 микрон (гигантские пирамидные клетки Беца). Форма нейронов также разнообразна.

Нервные клетки имеют очень большие ядра, связанные функционально и структурно с мембраной клетки. Некоторые нейроны – многоядерны, например, нейросекреторные клетки гипоталамуса или при регенерации нейронов. В раннем постнатальном периоде нейроны могут делиться.

В цитоплазме нейрона обнаруживают т.н. вещество Ниссля – это гранулы эндоплазматического ретикулюма, богатые рибосомами. Его много вокруг ядра. Под мембраной клетки эндоплазматический ретикулюм образует цистерны, ответственные за поддержание концентрации К+ под мембраной. Рибосомы – это колоссальные фабрики белка. Весь белок нервной клетки обновляется за 3 дня, а при повышении функции нейрона – еще быстрее. Агранулярный ретикулюм представлен аппаратом Гольджи, который как бы окружает всю нервную клетку изнутри. На нем имеются лизосомы, содержащие различные ферменты, пузырьки с гранулами медиатора. Аппарат Гольджи принимает активное участие в формировании пузырьков с медиатором.

И в теле клетки, и в отростках много митохондрий, энергетических станций клетки. Это подвижные органеллы, способные за счет актомиозина передвигаться туда, где в клетке необходима энергия для ее деятельности.

Место отхождения аксона от тела нервной клетки (аксонный холмик) имеет наибольшее значение в возбуждении нейрона. Это – триггерная зона нейрона, именно здесь легче всего возникает возбуждение. В этой области на протяжении 50-100 мк. аксон не имеет миэлиновой оболочки, поэтому аксонный холмик и начальный сегмент аксона обладают наименьшим порогом раздражения (дендрит – 100 мв, сома – 30 мв, аксонный холмик – 10 мв).

Дендриты тоже играют определенную роль в возникновении возбуждения нейрона. На них в 15 раз больше синапсов, чем на соме, поэтому ПД, проходящие по дендритам к соме, способны легко деполяризовать сому и вызвать залп импульсов по аксону. Предполагают, что возбуждение по дендритам проходит с декрементом, поскольку они – зона интеграции в нервной клетке. С позиций интеграции бездекременное проведение невыгодно, так как сома постоянно находилась бы в возбуждении от частых импульсов, приходящих по дендритам.



Оставьте комментарий