Классификация межнейронных синапсов

Межнейронные связи — это контакты между нейронами, осуществляемые посредством синапсов.

Типы межнейрональных контактов:

  • аксоносоматические — между аксоном и клеткой ткани-мишени;
  • аксонодендритические — между аксоном и дендритом другого нейрона;
  • аксоноаксональные — между данным аксоном и аксоном другого нейрона.

Главная задача нейрона — получить информацию, «осмыслить» ее и передать дальше.

СТРУКТУРА И ФУНКЦИИ СИНАПСА:

Каждый многоклеточный организм, каждая ткань, состоящая из клеток,нуждается в механизмах, обеспечивающих межклеточные взаимодействия.

Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования — синапы (от греч. «Synapsis» -соединение, связь). Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса. Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс — представляет собой сложное структурное образование, состоящее из пресинаптической мембраны (чаще всего это концевое разветвление аксона), постсинаптической мембраны (чаще всего это участок мембраны тела или дендрита другого нейрона), а так же синаптической щели.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциалов нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга. Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи — это так называемые смешанные синапсы. Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса — моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов. Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.

Дата публикования: 2015-01-24; Прочитано: 2069 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

МЕЖНЕЙРОННЫЕ КОНТАКТЫ (СИНАПСЫ)

Предыдущая78910111213141516171819202122Следующая

Синапс состоит из З-х компонентов:пресинаптической части, постсинаптической части и синаптической щели.

Межнейронные контакты (синапсы) подразделяются на электрические и химические.

Электрические синапсыв ЦНС млекопитающих редки; они имеют строение щелевых соединений, в которых мембраны синаптически связанных клеток (пре- и постсинаптическая) разделены промежутком шириной 2 нм, пронизанным коннексонами (см.раздел 2). Последние представляют собой трубочки, образованные белковыми молекулами и служащие водными каналами, через которые мелкие молекулы и ионы могут транспортироваться из одной клетки в другую. Когда потенциал действия, распространяющийся по мембране одной клетки, достигал области щелевого соединения, электрический ток пассивно протекал через щель от одной клетки к другой. Импульс способен передаваться в обоих направлениях и практически без задержки.

Химические синапсы – наиболее распространенный тип у млекопитающих. Их действие основано на преобразовании электрического сигнала в химический, который затем вновь преобразуется в электрический. Химический синапс состоит из трех компонентов: npecunanmuческой части, постсинаптической части и синаптической щели (рис.8.16, 8.17.).

Рис. 8.16. Строение химического синапса. Пресинаптическая часть (ПРСЧ) имеет вид концевого бутона (КБ) и включает: синаптические пузырьки (СП), митохондрии (МТХ), нейротрубочки (НТ), нейрофиламенты (НФ), пресинаптическую мембрану (ПРСМ) с пресинаптическим уплотнением (ПРСУ). В постсинаптическую часть (ПОСЧ) входит постсинаптическая мембрана (ПОСМ) с постсинаптическим уплотнением (ПОСУ). В синаптической щели (СЩ) находятся интрасинаптические филаменты (ИСФ).

Рис. 8.17 Аксодендрический синапс в ЦНС (х22000). Три терминальных расширения (В) образуют синапс с дендритом (D). Дендрит идентифицируется по наличию рибосом (R) и эндоплазматической сети (rER), которых нет в аксоне. В терминалях аксона много синаптических пузырьков (V), митохондрий.

1. Пресинаптическая часть образуется аксоном по его ходу (проходящий синапс) или представляет собой расширенную конечную часть аксона (концевой бутон). В ней содержатся митохондрии, аЭПС, иейрофиламенты, нейротрубочки и синаптические пузырьки диаметром 20-65 нм, в которых находится нейромедиатор. Форма и характер содержимого пузырьков зависят от находящихся в них нейромедиаторов. Круглые светлые пузырьки обычно содержат ацетилхолин, пузырьки с компактным плотным центром — норадреналин, крупные плотные пузырьки со светлым подмембранным ободком — пептиды. Нейромедиаторы вырабатываются в теле нейрона и механизмом быстрого транспорта переносятся в окончания аксона, где происходит их депонирование. Частично синаптические пузырьки образуются в самом синапсе путем отщепления от цистерн аЭПС.

Межнейрональные связи. Синапсы, их строение и функции

На внутренней стороне плазмолеммы, обращенной к синаптической щели (пресинаптической мембраны) имеется пресинаптическое уплотнение, образованное фибриллярной гексагональной белковой сетью, ячейки которой способствуют равномерному распределению синаптических пузырьков по поверхности мембраны.

2. Постсинаптическая часть представлена постсинаптической мембраной, содержащей особые комплексы интегральных белков — синаптические рецепторы, связывающиеся с нейромедиатором. Мембрана утолщена за счет скопления под ней плотного филаментозного белкового материала (постсинаптическое уплотнение). В зависимости от того, является ли постсинаптической частью межнейронного синапса дендрит, тело нейрона или (реже) его аксон, синапсы подразделяют на аксо-дендритические, аксо-соматические и аксо-аксоналъные, соответственно.

3. Синаптическая щель шириной 20-30 нм иногда содержит поперечно расположенные гликопротеиновые интрасинаптические филаменты толщиной 5 нм, которые являются элементами специализированного гликокаликса, обеспечивающими адгезивные связи пре- и постсинаптической частей, а также направленную диффузию медиатора.

Механизм передачи нервного импульса в химическом синапсе. Под действием нервного импульса происходит активация потенциал-зависимых кальциевых каналов пресинаптической мембраны; Са2+ устремляется в аксон, мембраны синаптических пузырьков в присутствии Са2+ сливаются с пресинаптической мембраной, а их содержимое (медиатор) выделяется в синаптическую щель механизмом экзоцитоза. Воздействуя на рецепторы постсинаптической мембраны, медиатор вызывает либо ее деполяризацию, возникновение постсинаптического потенциала действияи образование нервного импульса, либо ее гиперполяризацию, обусловливая реакцию торможения. Медиаторами, опосредующими возбуждение, например, служат ацетилхолин и глутамат, а торможение опосредуется ГАМК и глицином.

После прекращения взаимодействия медиатора с рецепторами постсинаптической мембраны большая часть его эндоцитозом захватывается пресинаптической частью, меньшая рассеивается в пространстве и захватывается окружающими глиальными клетками. Некоторые медиаторы (например, ацетилхолин) расщепляются ферментами на компоненты, которые далее захватываются пресинаптической частью. Мембраны синаптических пузырьков, встроенные в пресинаптическую мембрану, в дальнейшем включаются в эндоцитозные окаймленные пузырьки и повторно используются для образования новых синаптических пузырьков.

В отсутствие нервного импульса пресинаптическая часть выделяет отдельные небольшие порции медиатора, вызывая в постсинаптической мембране спонтанные миниатюрные потенциалы.

Предыдущая78910111213141516171819202122Следующая



Связь между нервными клетками осуществляется при помощи синаптических связей в виде контактов — синапсов.

Синапс — место контакта между двумя нейронами или между нейроном и получающей сигнал эффекторной клеткой.

Синапсы обеспечивают передачу нервного импульса между нервными клетками.

Между контактами передатчика (трансмиттера) и приёмника (рецептора) существует синаптическая щель шириной 10 — 50 нм (нанометров), так называемый щелевой контакт или нексус. Через синаптическую щель передача нервного импульса осуществляется при помощи нейромедиаторов (химических передатчиков) или ионов (электрических передатчиков). Существуют комбинированные (смешанные) синапсы, где нервные импульсы передаются нейромедиаторами и ионами.

Структуры мозга, содержащие нейроны с синаптическими связями называются нейронными сетями.

Формы синаптических связей в нейронных сетях могут быть:

между дендритами и аксонами;

между аксоном и телом нейрона;

между дендритами и телом нейрона.

Головной мозг

Головной мозг (латинское cerebrum) — основной отдел центральной нервной системы, расположенный в полости черепа. Основным функциональным назначением головного мозга является приём, обработка, формирование и передача ответных нервных импульсов. Высшей функцией головного мозга, сформированной в процессе эволюции, является распознавание и анализ речи.

Головной мозг подразделяют на следующие функциональные разделы:

Кора головного мозга, состоящая из белого вещества — подразделяется на доли, которые имеют различное функциональное назначение. О функциях долей коры головного мозга речь пойдёт ниже.

Таламус (thalamus) — другое название зрительный бугор. Таламус является коммутатором и обработчиком практически всех сигналов идущих от спинного мозга в кору головного мозга. Таламус является центром организации и реализации инстинктов, влечений, эмоций.

Гипоталамус — выполняет функции гомеостаза организма. К его функциям относят такие, как потребление пищи, потребление воды и водно-солевой баланс в организме, регуляцию температуры в зависимости от температуры внешней среды, эмоциональные переживания, мышечная работа, функцию размножения.

Гипофиз — относится к эндокринным органам.

Варолиев мост — содержит проводящие пути от различных органов. Является связкой между корой мозга и мозжечком.

Продолговатый мозг — является продолжением спинного мозга. Регулирует ряд сенсорных функций: рецепцию кожной чувствительности лица; первичный анализ рецепции вкуса; рецепцию слуховых раздражений; рецепцию вестибулярных раздражений.

Мозжечок — получает афферентные (направленные от периферии к центру) нервные импульсы от тактильных рецепторов, рецепторов вестибулярного аппарата, проприорецепторов мышц и сухожилий, а также двигательных зон коры. Функцией мозжечка является регуляция позы и движений.

Кора головного мозга подразделяется на: затылочную долю, височную долю, теменную долю и лобную долю.

Строение и классификация межнейронных синапсов

Лобная доля:

Зоны регуляции движений. Поражение правой или левой половины лобной доли приводит к параличу противоположной половины тела;

Центр письма — формирует навыки письма под контролем зрения;

Речедвигательный центр. В правом полушарии лобной доли сосредоточены тембровые зоны речи, в левой части лобной доли — речевая артикуляция и способность к членораздельной речи;

Ассоциативная зона.

Зона коры головного мозга, отвечающая за программирование сложного поведения, принятие решений, планирования, анализа полученных результатов, а так же волевого поведения, формирования "Я";

Обонятельный анализатор — распознавание запахов.

Затылочная доля:

Зрительные функция — зрительная память, бинокулярное зрение, распознавание образов.

Теменная доля:

Рецепторные анализаторы, характеризующие общую чувствительность: болевую, температурную, тактильную;

Регулирование способности осуществлять сложнокоординированные действия, за которые отвечает центр праксии. Эта область активно взаимосвязана и взаимодействует с корой лобной доли и со всеми сенсорными зонами задней части мозга;

Понимание читаемого текста.

Височная доля:

Корковый слой слухового анализатора;

Слуховой центр речи Вернике — отвечает за понимание речи;

Центры вестибулярного аппарата — отвечают за равновесие тела.

Межнейронные связи — это контакты между нейронами, осуществляемые посредством синапсов.

Типы межнейрональных контактов:

  • аксоносоматические — между аксоном и клеткой ткани-мишени;
  • аксонодендритические — между аксоном и дендритом другого нейрона;
  • аксоноаксональные — между данным аксоном и аксоном другого нейрона.

Главная задача нейрона — получить информацию, «осмыслить» ее и передать дальше.

СТРУКТУРА И ФУНКЦИИ СИНАПСА:

Каждый многоклеточный организм, каждая ткань, состоящая из клеток,нуждается в механизмах, обеспечивающих межклеточные взаимодействия.

Рассмотрим, как осуществляются межнейронные взаимодействия. По нервной клетке информация распространяется в виде потенциалов действия. Передача возбуждения с аксонных терминалей на иннервируемый орган или другую нервную клетку происходит через межклеточные структурные образования — синапы (от греч. «Synapsis» -соединение, связь). Понятие синапс было введено английским физиологом Ч. Шеррингтоном в 1897 году, для обозначения функционального контакта между нейронами. Следует отметить, что еще в 60-х годах прошлого столетия И.М. Сеченов подчеркивал, что вне межклеточной связи нельзя объяснить способы происхождения даже самого нервного элементарного процесса.

Межнейронные синапсы

Чем сложнее устроена нервная система, и чем больше число составляющих нервных мозговых элементов, тем важнее становится значение синаптических контактов.

Различные синаптические контакты отличаются друг от друга. Однако при всем многообразии синапсов существуют определенные общие свойства их структуры и функции. Поэтому сначала опишем общие принципы их функционирования.

Синапс — представляет собой сложное структурное образование, состоящее из пресинаптической мембраны (чаще всего это концевое разветвление аксона), постсинаптической мембраны (чаще всего это участок мембраны тела или дендрита другого нейрона), а так же синаптической щели.

Механизм передачи через синапс долгое время оставался невыясненным, хотя было очевидно, что передача сигналов в синаптической области резко отличается от процесса проведения потенциала действия по аксону. Однако в начале XX века была сформулирована гипотеза, что синаптическая передача осуществляется или электрическим или химическим путем. Электрическая теория синаптической передачи в ЦНС пользовалась признанием до начала 50-х годов, однако она значительно сдала свои позиции после того, как химический синапс был продемонстрирован в ряде периферических синапсов. Так, например, А.В. Кибяков, проведя опыт на нервном ганглии, а также использование микроэлектродной техники для внутриклеточной регистрации синаптических потенциалов нейронов ЦНС позволили сделать вывод о химической природе передачи в межнейрональных синапсах спинного мозга. Микроэлектродные исследования последних лет показали, что в определенных межнейронных синапсах существует электрический механизм передачи. В настоящее время стало очевидным, что есть синапсы, как с химическим механизмом передачи, так и с электрическим. Более того, в некоторых синаптических структурах вместе функционируют и электрический и химический механизмы передачи — это так называемые смешанные синапсы. Если электрические синапсы характерны для нервной системы более примитивных животных (нервная диффузионная система кишечнополостных, некоторые синапсы рака и кольчатых червей, синапсы нервной системы рыб), хотя они и обнаружены в мозге млекопитающих. Во всех перечисленных выше случаях импульсы передаются посредством деполяризующего действия электрического тока, который генерируется в пресинаптическом элементе. Хотелось бы также отметить, что в случае электрических синапсов возможна передача импульсов как в одном, так и в двух направлениях. Также у низших животных контакт между пресинаптическим и постсинаптическим элементом осуществляется посредством всего одного синапса — моносинаптическая форма связи, однако в процессе филогенеза осуществляется переход к полисинаптической форме связи, то есть, когда указанный выше контакт осуществляется посредством большего числа синапсов. Однако, в данной работе, мне хотелось бы подробнее остановиться на синапсах с химическим механизмом передачи, которые составляют большую часть синаптического аппарата ЦНС высших животных и человека. Таким образом, химические синапсы, на мой взгляд, особенно интересны, так как они обеспечивают очень сложные взаимодействия клеток, а также связаны с рядом патологических процессов и изменяют свои свойства под влиянием некоторых лекарственных средств.

Дата публикования: 2015-01-24; Прочитано: 2071 | Нарушение авторского права страницы

studopedia.org — Студопедия.Орг — 2014-2018 год.(0.001 с)…

Оставьте комментарий