Химические свойства полисахаридов


Химические свойства полисахаридов

1. Горение (практическое значение имеет для целлюлозы):

(C6H10O5)n + 6O2→ 6nCO2 + 5nH2O

1. Гидролиз (при нагревании в присутствии серной кислоты образуется глюкоза).

(C6H10O5)n + nH2O→ nC6H12O6

При гидролизе крахмала образуется α-глюкоза, а при гидролизе целлюлозы − β-глюкоза.

В зависимости от условий проведения реакции гидролиз может осуществляться ступенчато с образованием промежуточных продуктов.

(C6H10O5)n(крахмал) → (C6H10O5)m(декстрины (m<n)) → xC12H22O11(мальтоза) → nC6H12O6(глюкоза)

Реакцию превращения крахмала в глюкозу при каталитическом действии серной кислоты открыл в 1811 г. русский ученый К. Кирхгоф.

3) Крахмал не вступает в реакцию «серебряного зеркала».

4) Качественная реакция на крахмал:

(С6Н10О5)n + I2 → комплексное соединение сине-фиолетового цвета.

При нагревании окрашивание исчезает (комплекс разрушается), при охлаждении появляется вновь.

5. Термическое разложение целлюлозы без доступа воздуха приводит к образованию метанола, уксусной кислоты, ацетона и др. продуктов.

6. С уксусной и азотной кислотой целлюлоза образует сложные эфиры [C6H7O2(ONO2)3]n и [C6H7O2(OCOCH3)3]n.

целлюлоза + 3nHNO3 H2SO4 ––––→ тринитрат целлюлозы + 3nH2О

(C6H7O2(OH)3)n + 3nCH3COOH → (C6H7O2(OCOCH3)3)n + nH2O.

7. При взаимодействии целлюлозы с уксусным ангидридом в присутствии уксусной и серной кислот образуется триацетилцеллюлоза.

+ 3n триацетилцеллюлоза + 3n СH3СOOН

4. термическое разложение целлюлозы без доступа воздуха:

(С6Н10О5)n → древесный уголь +Н2О +летучие органические вещества

Роль углеводов.

Углеводы наряду с белками и липидами являются важнейшими химическими соединениями живых организмов. В организме животных и человека углеводы выполняют весьма важные функции: прежде всего энергетическую (главный вид клеточного топлива), структурную (обязательный компонент большинства внутриклеточных структур), защитную (велико значение полисахаридов в поддержании иммунитета).

Углеводы также используются для синтеза нуклеиновых кислот (рибоза, дезоксирибоза), они являются составными компонентами нуклеотидных коферментов, играющих исключительно важную роль в метаболизме живых существ. В последнее время все большее внимание стали привлекать сложные смешанные биополимеры, содержащие углеводы. К таким смешанным биополимерам относятся, помимо нуклеиновых кислот, гликопептиды и гликопротеиды, гликолипиды и липополисахариды, гликолипопротеиды и т. д. Эти вещества выполняют сложные и важные функции в организме.

В составе тела человека и животных углеводы присутствуют в меньшем количестве (не более 2% от сухой массы тела), чем белки и липиды. В растительных организмах на долю углеводов приходится до 80% сухой массы, поэтому в целом в биосфере углеводов больше, чем всех других органических соединений, вместе взятых.

Углеводы служат важным источником питания: мы потребляем зерно, или скармливаем его животным, в организме которых крахмал превращается в белки и жиры. Самая гигиеничная одежда сделана из целлюлозы или продуктов на её основе: хлопка и льна, вискозного волокна или ацетатного шелка. Деревянные дома и мебель построены из той же целлюлозы, образующей древесину. В основе производства фото- и кинопленки все та же целлюлоза. Книги, газеты, денежные банкноты – всё это продукция целлюлозно-бумажной промышленности. Значит, углеводы обеспечивают нас всем необходимым.

Кроме того, углеводы участвуют в построении сложных белков, ферментов, гормонов. Углеводами являются и такие жизненно необходимые вещества, как гепарин (он играет важнейшую роль — предотвращает свертывание крови), агар-агар (его получают из морских водорослей и применяют в микробиологической и кондитерской промышленности).

Единственным источником энергии на Земле (помимо ядерной) является энергия Солнца, а единственным способом его аккумулирования для обеспечения жизнедеятельности всех живых организмом является процесс фотосинтеза, протекающий в клетках растений и приводящий к синтезу углеводов из воды и углекислого газа. Кстати, именно при этом превращении образуется кислород, без которого жизнь на нашей планете была бы невозможно.

Список используемых источников:

  1. О.С. Габриелян и др. Химия. 10 класс. Профильный уровень: учебник для общеобразовательных учреждений; Дрофа, Москва, 2005г.
  2. «Репетитор по химии» под редакцией А. С. Егорова; «Феникс», Ростов-на-Дону, 2006г.
  3. http://www.yaklass.rhttps://infourok.ru/urok-po-himii-uglevodi-618436.html
  4. u/materiali?mode=lsntheme&THEMEID=143
  5. http://ido.tsu.ru/schools/chem/data/res/chemfor/uchpos/text/g3_7_18.html
  6. http://school-sector.relarn.ru/nsm/chemistry/Rus/Data/Text/Ch3_7.html
  7. http://bono-esse.ru/blizzard/A/Chimia/Bio_chinija/chimija_uglevodov.html

Дата добавления: 2017-06-13; просмотров: 1488;

Похожие статьи:

Биологическая роль дисахаридов.

Сахароза в желудочно-кишечном тракте распа­дается на глюкозу и фруктозу. Сахароза — наиболее распространенный сахар. Источники сахарозы: сахар­ная свекла (14-18%) и сахарный тростник (10-15%). Содержание сахарозы: в сахарном песке — 99,75%, в сахаре-рафинаде — 99,9%.

Сахароза обладает способностью превращаться в жир. Избыточное поступление этого углевода в пищевом рационе вызывает нарушение жирового и хо-лестеринового обмена в организме человека, оказы­вает отрицательное воздействие на состояние и функ­цию кишечной микрофлоры, повышая удельный вес гнилостной микрофлоры, усиливая интенсивность гнилостных процессов в кишечнике, приводит к раз­витию метеоризма кишечника. Избыточное количест­во сахарозы в питании детей приводит к развитию кариеса зубов.

Лактоза углевод животного происхождения. При гидролизе расщепляется на глюкозу и галакто­зу. Гидролиз протекает медленно, ограничивая про­цесс брожения, что имеет большое значение в пита­нии детей грудного возраста. Поступление лактозы в организм способствует развитию молочнокислых бак­терий, подавляющих развитие гнилостных микроор­ганизмов. Лактоза в наименьшей степени использу­ется для жирообразования и при избытке не повыша­ет содержание холестерина в крови. Источник лакто­зы: молоко и молочные продукты, в которых содер­жание этого дисахарида может достигать 4-6%.

Крахмал. На его долю в пищевом рационе прихо­дится около 80% общего количества потребляемых углеводов. Крахмал в организме человека является основным источником глюкозы. Крахмал составляет основную часть углеводов хлеба и хлебобулочных изделий, муки, различных круп, картофеля.

Гликоген являйся резервным углеводом живот­ных тканей.

Химические свойства полисахаридов

Избыток углеводов, поступающих с пи­щей, превращается в гликоген, который откладыва­ется в печени, образуя депо углеводов, используемых для различных физиологических функций — важная роль в регуляции уровня сахара в крови. Общее со­держание гликогена около 500 г. Если углеводы с пищей не поступают, то запасы его исчерпываются через 12-18 часов. В связи с истощением резервов углеводов усиливаются процессы окисления жирных кислот. Обеднение печени гликогеном ведет к возник­новению жировой инфильтрации, а далее — к жиро­вой дистрофии печени.

Источники гликогена: печень, мясо, рыба.

Пектиновые вещества. Различают пектины и протопектины.

Протопектин — соединение пектина с целлюло­зой. Он содержится в клеточных стенках растений, в воде нерастворим. Жесткость незрелых плодов объ­ясняется значительным содержанием в них протопек­тина. В процессе созревания протопектин расщепля­ется и плоды становятся мягкими, одновременно они обогащаются пектином.

Пектин является составной частью клеточного сока и отличается хорошей усвояемостью. Пектино­вые вещества обладают свойством тормозить деятель­ность гнилостной микрофлоры кишечника. Пектин используется в лечебно-профилактическом питании для лиц, работающих со свинцом и другими токсичес­кими веществами.

Пектиновые вещества содержатся в абрикосах, апельсинах, вишне, сливе, яблоках, груше, айве, тык­ве, моркови,редисе.

Клетчатка (целлюлоза) образует оболочки кле­ток и является опорным веществом. Важная роль клет­чатки в качестве стимулятора перистальтики кишеч­ника, адсорбента стеринов, в том числе холестерина, препятствует обратному их всасыванию и выведению из организма. Клетчатка играет роль в нормализации состава микрофлоры кишечника, в уменьшении гнилостных процессов, препятствует всасыванию ядови­тых веществ.

Клетчатка содержится: в картофеле (1 %), плодах и фруктах (0,5-1,3%), овощах (0,7-2,8%), гречневой крупе (2%).

Потребность углеводов в среднем равна 400-500 г/сутки, что составляет по отношению к белкам и жирам 1:1:4 (для детей) и 1:1,25:5 (для взрослых). При этом в общем количестве углеводов на крахмал должно приходиться 350-400 г, на моно- и дисахари-ды — 50-100 г, на пищевые балластные вещества (цел­люлозу и пектиновые вещества) —25 г.

Неумеренное потребление сахара способствует развитию кариеса зубов, нарушению нормального соотношения возбудительных и тормозных процессов в НС, поддерживает воспалительные процессы, спо­собствует аллергизации организма.

Необходимо ограничивать углеводы при следую­щих заболеваниях:

1) сахарном диабете;

2) ожирении;

3) аллергиях, заболеваниях кожи;

4) воспалительных процессах.

Дата добавления: 2014-01-05; Просмотров: 879; Нарушение авторских прав?;

Читайте также:

Поиск Лекций

Химические свойства полисахаридов

Углеводы

Углеводы – органические вещества, содержащие в молекулах карбонильную и несколько гидроксильных групп, а также их производные и продукты конденсации.

Углеводы объединяют разнообразные соединения – от низкомолекулярных, состоящих из нескольких атомов (х = 3), до полимеров [Сх(Н2О)у]n с молекулярной массой в несколько миллионов.

Классификация углеводов (по числу молекул моносахаридов, образующихся при кислотном гидролизе углеводов):

1. Моносахариды (не подвергаются гидролизу): триозы, тетрозы, пентозы (рибоза С5Н10О5, дезоксирибоза С5Н10О4), гексозы (глюкоза, фруктоза – С6Н12О6)

2. Дисахариды (состоят из двух остатков молекул моносахаридов): сахароза, мальтоза, лактоза

3. Полисахариды (состоят из большого числа остатков молекул моносахаридов): крахмал, гликоген, целлюлоза, хитин

Моносахариды

Молекулярные формулы глюкозы и фруктозы совпадают: С6Н12О6. Следовательно, фруктоза и глюкоза являются структурными изомерами. Структурные формулы молекул этих моносахаридов показаны ниже:

Наряду с приведенными линейными (открытыми) формами глюкоза и фруктоза существуют в циклических α- и β-формах. Эти формы образуются за счет взаимодействия карбонильной и карбоксильной групп:

Физические и химические свойства глюкозы и фруктозы

Глюкоза (виноградный сахар) – бесцветное кристаллическое вещество, хорошо растворимое в воде, сладкое на вкус.

Полисахариды. Целлюлоза.

Фруктоза – самый сладкий моносахарид, примерно вдвое слаже глюкозы.

Химические свойства глюкозы обусловлены наличием в молекуле альдегидной группы и пяти гидроксильных групп.

Тип реакции Примечание
Реакции с участием альдегидной группы
Окисление: а) бромной водой СH2OH(CHOH)4-COH + Br2 + H2O → →СH2OH(CHOH)4-COOH + 2HBr глюконовая кислота   б) аммиачным раствором Ag2O при слабом нагревании: СH2OH(CHOH)4-COH + Ag2O t.NH3→ →СH2OH(CHOH)4-COOH + 2Ag↓     в) свежеосажденным Cu(OH)2 при слабом нагревании: СH2OH(CHOH)4-COH + 2Cu(OH)2t → →СH2OH(CHOH)4-COOH + Cu2O↓ + 2H2O     Реакцию с бромной водой используют для качественного определения альдегидной группы в молекуле глюкозы. Фруктоза бромную воду не обесцвечивает, т.е. с ней не реагирует.   В эту же реакцию вступает и фруктоза, поскольку в щелочной среде изомеризуется в глюкозу   Образуется красный осадок Cu2O. В подобную реакцию вступает и фруктоза
Восстановление: СH2OH(CHOH)4-COH + H2t,Ni → СH2OH(CHOH)4-CH2OH сорбит Под действием восстановителей глюкоза и фруктоза превращаются в шестиатомный спирт – сорбит
Реакции с участием гидроксильных групп
Взаимодействие с Cu(OH)2 при обычных условиях Появляется интенсивное синее окрашивание, что свидетельствует о наличии в молекуле глюкозы (фруктозы) нескольких гидроксильных групп
Взаимодействие с уксусной кислотой или уксусным ангидридом   Образуется сложный эфир глюкозы. В реакциях с галогеналканами образуются простые эфиры. В эти же реакции вступает и фруктоза
Брожение 1.Спиртовое брожение: C6H12O6 → 2C2H5-OH + 2CO2↑ 2. Молочнокислое брожение:    

Получение глюкозы

1. В промышленности

Гидролиз крахмала:

(C6H10O5)n + nH2O t,H+→ nC6H12O6

крахмал глюкоза

2. В лаборатории

Из формальдегида (1861 г А.М. Бутлеров):

6 HCOH Ca(OH)2→ C6H12O6

формальдегид

3. В природе

Фотосинтез:

6CO2 + 6H2O hν, хлорофилл → C6H12O6 + 6O2

4. Другие способы

Гидролиз дисахаридов:

C12H22O11 + H2O t,H+→ 2 C6H12O6

мальтоза глюкоза

C12H22O11 + H2O t,H+→ C6H12O6 + C6H12O6

сахароза глюкоза фруктоза

Дисахариды

Представителями дисахаридов являются сахароза, мальтоза и лактоза. Их состав отражает одинаковая формула С12Н22О11, они являются изомерами. Все они представляют собой белые кристаллические вещества, хорошо растворимые в воде и сладкие на вкус.

Сахароза плавится в интервале температур 160 – 185С° и при застывании превращается в смесь аморфных веществ – карамель.

Сахароза содержится в сахарной свекле (17-19%), сахарном тростнике (13-15%), сахарном клене. Лактоза (молочный сахар) содержится в солоке (2-8%), а мальтоза (солодовый сахар) получается при ферментативном гидролизе крахмала (содержится в проросших зернах).

Химические свойства

Важное химическое свойство сахарозы – способность подвергаться гидролизу (при нагревании в присутствии ионов водорода). При этом из одной молекулы сахарозы образуется молекула глюкозы и молекула фруктозы:

С12Н22О11 + Н2О t, H2SO4→ С6Н12O6 + С6Н12O6

При гидролизе различные дисахариды расщепляются на составляющие их моносахариды за счёт разрыва связей между ними (гликозидных связей):

Сахароза + Н2О → α-глюкоза + β-фруктоза

Мальтоза + Н2О → α-глюкоза + α-глюкоза

Лактоза + Н2О → α-глюкоза + галактоза

Сахароза – невосстанавливающий углевод, а лактоза и мальтоза – восстанавливающие. В химическом отношении восстанавливающие дисахариды проявляют свойства альдегидов: дают реакцию серебряного зеркала, взаимодействуют с свежеприготовленным раствором Cu(OH)2.

Также за счёт гидроксильных групп дисахариды проявляют свойства многоатомных спиртов: дают качественную реакцию на многоатомные спирты (растворяют Сu(ОН)2).

Полисахариды

К числу важнейших полисахаридов относятся крахмал, целлюлоза (клетчатка) и гликоген, состав которых выражается формулой (С6Н10О5)n.

Крахмал

Физические свойства

Это белый порошок, нерастворимый в холодной воде и образующий коллоидный раствор (крахмальный клейстер) в горячей воде. Существует в двух формах: амилоза – линейный полимер, растворимый в горячей воде, амилопектин – разветвлённый полимер, не растворимый в воде, лишь набухает.

Нахождение в природе

Крахмал – основной источник резервной энергии в растительных клетках – образуется в растениях в процессе фотосинтеза и накапливается в клубнях, корнях, семенах:

6CO2 + 6H2O свет, хлорофилл → C6H12O6 + 6O2

nC6H12O6 → (C6H10O5)n + nH2O

глюкоза крахмал

Содержится в клубнях картофеля, зёрнах пшеницы, риса, кукурузы.

Гликоген (животный крахмал), образуется в печени и мышцах животных.

Строение

Состоит из остатков α — глюкозы.

В состав крахмала входят:

ü амилоза (внутренняя часть крахмального зерна) – 10-20%

ü амилопектин (оболочка крахмального зерна) – 80-90%

Цепь амилозы включает 200 – 1000 остатков α-глюкозы и имеет неразветвленное строение.

Амилопектин состоит из разветвленных макромолекул, молекулярная масса которых достигает 1 — 6 млн.

Амилоза и амилопектин гидролизуются под действием кислот или ферментов до глюкозы, которая служит непосредственным источником энергии для клеточных реакций, входит в состав крови и тканей, участвует в обменных процессах. Поэтому крахмал – необходимый резервный углевод питания.

Подобно амилопектину построен гликоген (животный крахмал), макромолекулы которого отличаются большей разветвлённостью:

Применение

Крахмал широко применяется в различных отраслях промышленности (пищевой, бродильной, фармацевтической, текстильной, бумажной и т.п.).

ü Ценный питательный продукт.

ü Для накрахмаливания белья.

ü В качестве декстринового клея.

Химические свойства полисахаридов

Гидролиз:

(C6H10O5)n + nH2O t,H2SO4 → nC6H12O6

глюкоза

Гидролиз протекает ступенчато:

(C6H10O5)n → (C6H10O5)m → xC12H22O11 → n C6H12O6(Примечание, m<n)

крахмал декстрины мальтоза глюкоза

Качественная реакция:

Охлаждённый крахмальный клейстер + I2 (раствор) = синее окрашивание, которое исчезает при нагревании.

Макромолекула амилозы представляет собой спираль, каждый виток которой состоит из 6 звеньев α-глюкозы. При взаимодействии амилозы с йодом в водном растворе молекулы йода входят во внутренний канал спирали, образуя так называемое соединение включения. Это соединение имеет характерный синий цвет. Данная реакция используется в аналитических целях для обнаружения, как крахмала, так и йода (йодкрахмальная проба).

Целлюлоза

Целлюлоза (клетчатка) – растительный полисахарид, являющийся самым распространенным органическим веществом на Земле.

Физические свойства

Это вещество белого цвета, без вкуса и запаха, нерастворимое в воде, имеющее волокнистое строение. Растворяется в аммиачном растворе гидроксида меди (II) – реактиве Швейцера.

Нахождение в природе

Этот биополимер обладает большой механической прочностью и выполняет роль опорного материала растений, образуя стенку растительных клеток. В большом количестве целлюлоза содержится в тканях древесины (40-55%), в волокнах льна (60-85%) и хлопка (95-98%). Основная составная часть оболочки растительных клеток. Образуется в растениях в процессе фотосинтеза.

Древесина состоит на 50% из целлюлозы, а хлопок и лён, конопля практически чистая целлюлоза.

Хитин (аналог целлюлозы) – основной компонент наружного скелета членистоногих и других беспозвоночных, а также в составе клеточных стенок грибов и бактерий.

Строение

Состоит из остатков β — глюкозы

Получение

Получают из древесины

Применение

Целлюлоза используется в производстве бумаги, искусственных волокон, пленок, пластмасс, лакокрасочных материалов, бездымного пороха, взрывчатки, твердого ракетного топлива, для получения гидролизного спирта и др.

Получение ацетатного шёлка – искусственное волокно, оргстекла, негорючей плёнки из ацетилцеллюлозы.

Получение бездымного пороха из триацетилцеллюлозы (пироксилин).

Получение коллодия (плотная плёнка для медицины) и целлулоида (изготовление киноленты, игрушек) из диацетилцеллюлозы.

Изготовление нитей, канатов, бумаги.

Получение глюкозы, этилового спирта (для получения каучука)

К важнейшим производным целлюлозы относятся:
— метилцеллюлоза (простые метиловые эфиры целлюлозы) общей формулы [C6H7O2(OH)3-x(OCH3)x]n (х = 1, 2 или 3);

— ацетилцеллюлоза (триацетат целлюлозы) – сложный эфир целлюлозы и уксусной кислоты [C6H7O2(OCOCH3)3]n

— нитроцеллюлоза (нитраты целлюлозы) – сложные азотнокислые эфиры целлюлозы: [C6H7O2(OH)3-х(ONO2)х]n (х = 1, 2 или 3).

Химические свойства

Гидролиз

(C6H10O5)n + nH2O t,H2SO4 → nC6H12O6

глюкоза

Гидролиз протекает ступенчато:

(C6H10O5)n → (C6H10O5)m → xC12H22O11 → n C6H12O6(Примечание, m<n)

крахмал декстрины мальтоза глюкоза

Реакции этерификации

Целлюлоза – многоатомный спирт, на элементную ячейку полимера приходятся три гидроксильных группы. В связи с этим, для целлюлозы характерны реакции этерификации (образование сложных эфиров). Наибольшее практическое значение имеют реакции с азотной кислотой и уксусным ангидридом. Целлюлоза не дает реакции "серебряного зеркала".

1. Нитрование:

(C6H7O2(OH)3)n + 3nHNO3H2SO4(конц.)→ (C6H7O2(ONO2)3)n + 3nH2O

пироксилин

целлюлоза     +3n HNO3     H2SO4 тринитрат целлюлозы     + 3n H2О

Полностью этерифицированная клетчатка известна под названием пироксилин, который после соответствующей обработки превращается в бездымный порох. В зависимости от условий нитрования можно получить динитрат целлюлозы, который в технике называется коллоксилином. Он так же используется при изготовлении пороха и твердых ракетных топлив. Кроме того, на основе коллоксилина изготавливают целлулоид.

2. Взаимодействие с уксусной кислотой:

(C6H7O2(OH)3)n + 3nCH3COOH H2SO4(конц.)→ (C6H7O2(OCOCH3)3)n + 3nH2O

При взаимодействии целлюлозы с уксусным ангидридом в присутствии уксусной и серной кислот образуется триацетилцеллюлоза.

    +3n     → триацетилцеллюлоза     +3n СH3СOOН

Триацетилцеллюлоза (или ацетилцеллюлоза) является ценным продуктом для изготовления негорючей кинопленки и ацетатного шелка.

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Полисахариды получаются с помощью поликонденсации моносахаридов. Общая формула (С6Н10О5)n. Простейшие представители – крахмал и целлюлоза.

Крахмал получается в процессе фотосинтеза и откладывается в корнях и семенах. Это белый порошок, нерастворимый в холодной воде, а в горячей образует коллоидный раствор.

Крахмал – природный полимер, образованный остатками α-глюкозы. Он модет быть в 2х формах: амилоза и амиопектин.

Амилоза – это линейный полимер, растворимый в воде, в котором остатки глюкозы связаны через 1 и 4 атомы углерода.

Линейная полимерная цепь свернута в спираль. Комплекс амилозы и йода дает синее окрашивание. Эта реакция является качественной для обнаружения йода.

Амилопектин нерастворим в воде и разветвлен:

Химические свойства полисахаридов.

При нагревании в кислой среде крахмал подвергается гидролизу. Конечным продуктом является глюкоза:

Эта реакция имеет промышленное значение.

Целлюлоза.

Целлюлоза является основным продуктом растительных клеток. Древесина состоит из целлюлозы, а хлопок и лен – это почти 100%-я целлюлоза.

3.3. Химические свойства полисахаридов.

Это природный полимер:

Химические свойства целлюлозы .

1. Целлюлоза подвергается гидролизу в кислой среде при нагревании. Конечный продукт – глюкоза.

2. Характерна реакция образования сложных эфиров:

Тринитрат целлюлозы- взрывчатое вещество, на его основе делают порох.

Дополнительные материалы по теме: Полисахариды. Целлюлоза.

  

Калькуляторы по химии

Химия онлайн на нашем сайте для решения задач и уравнений.
Калькуляторы по химии

Соединения химических элементов

Алканы, вода, галогены, мыла, жиры, гидроксиды; оксиды, хлориды, производные химических элементов таблицы Менделеева Соединения химических элементов
  

Химия 7,8,9,10,11 класс, ЕГЭ, ГИА

Основная информация по курсу химии для обучения и подготовки в экзаменам, ГВЭ, ЕГЭ, ОГЭ, ГИА Химия 7,8,9,10,11 класс, ЕГЭ, ГИА

Вода. Свойства воды.

Вода – наиболее широко распространённое соединение на нашей планете. Вода. Свойства воды.

Оставьте комментарий