Ферменты тканевого дыхания


Г-5. Классификация ферментов дыхания.

Основные группы ферментов, участвующие в процессе дыхания, относятся к классу оксидоредуктаз, которые в зависимости от химической природы и выполняемых функций, подразделяются на следующие группы:

1. Дегидрогеназы:

а) пиридиновые – содержащие NADH в качестве кофермента. Их называют первичными, поскольку они окисляют непосредственно дыхательный субстрат и анаэробными, поскольку они «передают» электроны другим дегидрогеназам (флавиновым);

б) флавиновые– содержащие FAD или FMN в качестве простетических групп. Их называют вторичными, поскольку они окисляют, как правило, пиридиновые дегидрогеназы и аэробными, поскольку они «передают» электроны на молекулярный кислород непосредственно или через посредство оксидаз;

2. Оксидазы– ферменты, активирующие молекулярный кислород:

а) Fe-содержащие – цитохромы (a, b, c, d), включающие простетические группы, образованные различным типом гемов. Образуют цитохромную систему, служащую промежуточным звеном между восстановленными флавиновыми (или пиридиновыми) дегидрогеназами и кислородом;

б) Cu-содержащие – участвуют, как правило, в альтернативном окислении субстрата в присутствии кислорода воздуха (полифенолоксидаза, гликолатоксидаза, аскорбинатоксидаза и др.).

3. Оксигеназы– активируют кислород с последующим его включением в молекулу субстрата:

а) монооксигеназы (гидроксилазы) – включают в окисляемый субстрат один атом кислорода в присутствии косубстрата(например, NADH), окисляя неполярные группы, трудноподдающиеся действию других ферментов;

б) диоксигеназы – включают в окисляемый субстрат один атом кислорода, деградируя многие токсические соединения.

Кроме оксидоредуктаз в акте дыхания могут участвовать ферменты, относящиеся к другим классам, которые объединяют в группу вспомогательных ферментов.Вспомогательные ферменты выполняют следующие функции:

1) преодоление химической инертности дыхательного субстрата путем его активации с образованием фосфорных эфиров: гексокиназа, фосфофруктокиназа, фосфоглицераткиназа и др.;

2) изменение внутренней структуры молекулы (енолаза, гексозофосфатизомераза и др.);

3) изменение длины цепи молекулы (альдолаза, карбоксилазы и др.);

4) перенос группировки(транскетолаза, трансальдолаза, пируваткиназа и др.).

Ферменты дыхания растений имеют ряд особенностей, отличающих их от ферментов животных. Их специфика укладывается в следующие принципы:

1. Множественность – одна реакция может катализироваться многими ферментами.

2. Полифункциональность – один фермент может катализировать многиереакции.

3. Рассредоточенность – окисление субстрата может осуществляться практически во всех клеточных структурах.

Благодаря взаимодействию этих принципов, растительный организм обладает возможностью альтернативного окисления субстрата, то есть субстрат может быть окислен многими путями. Это позволяет растительному организму «приспособить» (адаптировать) процесс дыхания к условиям непостоянного температурного режима.

смородина, ежевика, вика.

Г.7)

ОКСИДАЗЫ, ферменты класса оксидоредуктаз, катализирующие окислительно-восстановительные реакции, акцепторами водорода в которых служит кислород воздуха. При этом образуется вода или перекись водорода (H2O2). Коферментом многих оксидаз являются производные витамина B2 — ФАД или ФМН. Оксидазы широко распространены в природе и играют важную роль в катаболизме (распаде) и детоксикации различных соединений (например, моноаминоксидаза разрушает биогенные амины).

( ДЕЛАЛ НУРИК, СХАЛТУРИЛ, НАХУЙ ТАК ДЕЛАТЬ )

Г8 Митохондрии как центры аэробного дыхания

Митохондрии — «силовые» станции клетки, в них локализована большая часть реакций дыхания (аэробная фаза). В митохондриях происходит аккумуляция энергии дыхания в аденозинтрифосфате (АТФ). Энергия, запасаемая в АТФ, служит основным источником для физиологической деятельности клетки

Кислодный этап клеточного дыхания протекает в митохондриях. В этот этап вступают ПВК и восстановленный НАД (продукты гликолиза, предшествующего кислородному этапу). Кроме того, для осуществления кислородного этапа необходимо поступление в митохондрии молекулярного кислорода (О2), наличие особых ферментов и других веществ.

ПВК поступает в матрикс митохондрий, где полностью расщепляется и окисляется до конечных продуктов – СО2 и Н2О. Восстановленный НАД также поступает в митохондрии, где подвергается окислению. В ходе аэробного этапа дыхания потребляется кислород и синтезируются 36 молекул АТФ (в расчёте на 2 молекулы ПВК). СО2 выделяется из митохондрий в гиалоплазму клетки, а затем в окружающую среду.

Г-9 Дергачева К.

Окислительное фосфорилирование— метаболический путь, при котором энергия, образовавшаяся при окислении питательных веществ, запасается в митохондриях клеток в виде АТФ, которое является универсальным соединением, в котором запасается энергия, необходимая для других метаболических процессов. Почти все аэробные организмы осуществляют окислительное фосфорилирование.
Энергия, высвобождающаяся в дыхательной цепи, аккумулируется в макроэргических соединениях АТФ. Энергия, освобождающаяся в процессе биологического окисления только частично рассеивается в виде тепла (около 40%), а большая часть накапливается в форме макроэргических молекул АТФ (около 60%).
Молекула АТФ – это универсальный акцептор и донор химической энергии в клетках. Гидролиз каждой макроэргической связи АТФ сопровождается выделением 7,3 килокалорий энергии на 1 грамм-молекулу. В дыхательной цепи при переносе каждой пары электронов на 1 атом кислорода образуется 3 молекулы АТФ, то есть отношение фосфора к кислороду равно трем: P / О = 3. Синтез молекулы АТФ происходит в определенных участках дыхательной цепи. На каждом этапе синтеза АТФ аккумулируется 8 ккал на каждую грамм-молекулу образовавшейся АТФ.
Свободное окисление происходит без фосфорилирования, то есть при этом АТФ не синтезезируется. Такое окисление происходит на наружной поверхности митохондрий с участием таких же ферментов, как внутри митохондрий, промежуточные и конечные продукты окисления также не отличаются от продуктов дыхательной цепи. Отличие только в том, что в этом случае не образуются макроэргические соединения (АТФ). Свободное окисление происходит также в пероксисомах цитоплазмы, где главным ферментом является пероксидаза(каталаза), окисляющая H2O2. Свободное окисление важно для поддержания температуры тела в условиях холода, так как энергия, выделяющаяся при этом, рассеивается в виде тепла.
Микросомальное окисление происходит в микросомах. В мембранах клеток имеется окислительная система, которая катализирует гидроксилирование различных субстратов:
RH + O2 + НАДФН2 ROH + H2O + НАДФ

ПОНЯТИЕ О ТКАНЕВОМ ДЫХАНИИ. СТАДИИ ТКАНЕВОГО ДЫХАНИЯ. СОСТАВ И ФУНКЦИЯ ДЫХАТЕЛЬНОЙ ЦЕПИ ВНУТРЕННЕЙ МЕМБРАНЫ МИТОХОНДРИЙ

Тканевое дыхание — это совокупность реакций аэробного окисления органических молекул в клетке, при которых молекулярный кислород является обязательным субстратом для образования продуктов окисления. Однако использоваться клеткой кислород может для разных задач:

1. во внутренней мембране митохондрий кислород является конечным акцептором электронов от окисляемых субстратов (НАДН·Н+ или ФАДН2) с возможностью включения его активной формы (оксид-анион; атомарный кислород) в молекулу воды – одного из конечных продуктов окисления органических молекул в клетках аэробного типа;

2. монооксигеназные системы внутренней мембраны митохондрий или мембран эндоплазматического ретикулума (ЭПР) используют один атом молекулярного кислорода для его включения в молекулы органических субстратов с целью модификации их структуры и появления таких функциональных групп, как гидроксильная, кето-, альдегидная, карбоксильная группы;

3. диоксигеназные системы ЭПР используют два атома молекулярного кислорода для образования перекисных соединений тип R2O2. Такие перекиси клетка утилизирует благодаря антиоксидантным ферментативным системам: глутатионпероксидаза и др..

Задача 1 выполняется клеткой аэробного типа преимущественно тогда, когда в клетке появляются вещества-энергоисточники, и есть необходимость для продукции энергии путем включения этих веществ–энергоисточников в катаболические пути. Тканевое дыхание клетки можно представить в виде стадий, их три:

1 стадия тканевого дыхания — 2-я стадия катаболических процессов;

2 стадия тканевого дыхания – Цикл Трикарбоновых Кислот (ЦТК);

3 стадия тканевого дыхания — функция дыхательной цепи внутренней мембраны митохондрий.

1-я и 2-я стадии тканевого дыхания продуцируют в цитозоле и в матриксе митохондрий восстановленные формы коферментов и простетических групп – потенциальные доноры электронов в дыхательную цепь внутренней мембраны митохондрий. Именно в этой мембране присутствует специальный комплекс ферментов и липофильных веществ (убихинон; коэнзим Q), который переносит электроны от восстановленных форм коферментов (НАДН) и простетических групп (ФАДН2) на атомарный кислород.

В структуре митохондрий выделяют наружную мембрану, внутреннюю мембрану, матрикс, межмембранное пространство. В матриксе и, частично, во внутренней мембране локализованы процессы первой и второй стадий тканевого дыхания: бета-окисление высших жирных кислот, реакции обмена аминокислот — окислительное дезаминирование, трансаминирование, цикл Кребса (ЦТК) за исключением сукцинатдегидрогеназной реакции.

Обе мембраны пронизывают транспортные системы, отвечающие за:

1. транспорт аминокислот;

2. транспорт АТФ/АДФ;

3. транспорт ионов;

4. челночные системы (малат-аспартатная, глицеролфосфатная), осуществляющие транспорт электронов и протонов от цитозольных форм восстановленных коферментов в матрикс и во внутреннюю мембрану;

5. транспорт трикарбоновых кислот;

6. транспорт ацилов ВЖК;

7. транспорт катионов и анионов.

Транспортные системы обеспечивают постоянство состава матрикса митохондрии, обмен веществами с цитоплазмой, доставку образующихся субстратов из матрикса в цитоплазму для нужд клетки.

Наиболее важной с энергетической точки зрения является третья стадия тканевого дыхания, т.е. функция дыхательной цепи внутренней мембраны митохондрий. Дыхательная цепь состоит из переносчиков электронов от восстановленных форм коферментов на кислород. Переносчики элетронов объединены в комплексы дыхательной цепи. Деление участников дыхательной цепи на комплексы (I-IV) возникло в ходе экспериментальных исследований по выделению и разделению компонентов дыхательной цепи с целью изучения их структуры и функции.

Комплекс I дыхательной цепи состоит из трансмембранного белка-фермента НАДН-дегидрогеназы (небелковая часть – ФМН) и железосеросодержащих белков (FeS-белки). Из матрикса НАДН-формы мигрируют во внутреннюю мембрану митохондрий, где их захватывает флавопротеин НАДН–дегидрогеназа. Протекает окислительно-восстановительная реакция:

НАДН·Н+ + ФМН·ДГаза ® НАД+ + ФМНН2·ДГаза

ФМН ФМНН2

Восстановленная форма НАДН-ДГазы через FeS-белки комплекса I передает электроны убихинону (КоQ), а протоны убихинон может захватывать из матрикса:

KoQ KoQH2

Убихинон — очень липофильная структура, свободно двигающаяся в направлении от поверхности внутренней мембраны, обращенной к матриксу (КоQH2), к поверхности внутренней мембраны, обращенной к межмембранному пространству (ММП) и обратно (КоQ). Восстановленная форма убихинона отдает электроны комплексу III дыхательной цепи, содержащему цитохромы в, с1 и FeS-белки. Цитохромы в и с1 – гемопротеины третичной структуры. Особенностью гемов является наличие в них катионов железа, меняющих степень окисления Fe²+/Fe³+. Гем цитохромов в , с1 или с способен принять только 1 ē, поэтому для передачи 2ē, которые транспортирует дыхательная цепь от окисляемого субстрата (восстановленной формы кофермента), нужны два цитохрома каждого типа. Цитохромы в , с1 и с не способны принимать в свою структуру ионы Н+. Следующим акцептором электронов является цитохром с (самый подвижный во внутренней мембране цитохром; не входит ни в один комплекс), это тоже гемопротеин третичной структуры.

Восстановленная форма цитохрома с (Fe²+) отдает далее электроны цитохром с-оксидазе (ЦХО). Цитохром с-оксидаза – трансмембранный белок, гемопротеин четвертичной структуры, состоящий из шести субъединиц: 4а и 2а3, последние содержат только Cu²+/Cu+.

Г-5. Классификация ферментов дыхания.

Данный белок называют также комплексом IV дыхательной цепи. Цитохром с-оксидаза, получая 4ē от цитохромов С (Fe²+), приобретает высокое сродство к молекулярному кислороду. Каждая пара электронов переходит на 1 атом молекулярного кислорода с формированием оксид-аниона, которые соединяясь с четырьмя протонами дают образование эндогенной воды: 4Н++4 ē +О2→2Н2О

Убихинон способен забирать электроны от восстановленной формы ФАДН2·СукцинатДГазы, которая образует вместе с FeS-белками и цитохромом в560 комплекс II дыхательной цепи во внутренней мембране митохондрий. Таким образом, убихинон является коллектором, собирающим электроны от окисляемых субстратов и, передавая их дальше цитохромам (рис.29):

Рис. 29. Комплексы дыхательной цепи внутренней мембраны митохондрий. На схеме две дыхательные цепи: одна – длинная, начинается с функции НАДН-ДГазы; вторая – короткая, начинается с функции СДГазы.

Дата добавления: 2017-09-19; просмотров: 611;

ПОСМОТРЕТЬ ЕЩЕ:

Образование Н2O2 и СО2.

Напомним, что тканевое дыхание это процесс поглощения кислорода (О2) тканями при окислении органического субстрата с выделением углекислого газа и воды. Выше мы уже показали, как из атомов водорода в дыхательной цепи образуются молекулы воды. Однако процесс дегидрирования субстрата НАД и ФАДзависимыми дегидрогеназами одновременно ведет и к отщеплению концевой карбоксильной группы, которая выделяется в виде СО2. Главными источниками СО2 является реакции декарбоксилирования пировиноградной и альфакетоглутаровой кислот (см. выше). Еще один источник – это процесс декарбоксилиро вание аминокислот, который катализируется пиридоксальзависимыми ферментами.

Поглощенный клеткой кислород в основном (до 8090%) используется для производства энергии в митохондриях. Однако, кислород используется и на другие цели – для синтеза сте роидов, простагландинов, лейкотриенов, тирозина, катехоламинов, для метаболизма чуже родных веществ и т.д..

Обмен веществ и энергии

При этом часть поглощенного тканями кислорода неферментативным путем или при участии монооксигеназ способна превращаться в активные формы (суперок сидный, гидроксильный. пероксильный радикалы, синглетный кислород, пероксид водорода, органическое пероксиды)

Например, в митохондриях около 8% кислорода может превращаться в активные фор мы, поскольку ФМНН2 способен отдавать электороны не только на убихинон, но и непо средственно на молекулу кислорода, превращая его в супероксидный радикал. Супероксид ный радикал и пероксид водорода, образуется также и под влиянием ксантиноксидазы, мо нооаминоксидазы, НАДФНоксидазы, цитохрома Р450 и т.д. Супероксидный радикал при участии фермента супероксиддисмутазы превращается в пероксид водорода (Н2О2), а по следний разрушается до воды каталазой и пероксидазой, глутатионпероксидазой). Ферменты обезвреживающие активные формы кислорода называются антиоксидантными, поскольку они защищают клетку от окислительного повреждения.

O2 + O2 + 2Н+ → Н2О2 +О2 (супероксиддисмутаза) _

2H2O2 → 2H2O + O2 (каталаза)

H2O2 → H2O + O (пероксидаза)

H2O2 + 2GSH → H2O + GSSG (глутатионпероксидаза)

Челночный механизм транспорта протонов из цитоплазмы в митохондрии.

Процессы дегидрирования в наибольших масштабах происходят в митохондриях, где со

средоточены дегидрогеназы цикла Кребса, цикла окисления жирных кислот и др. Однако большие количества водорода (и соответственно НАДН2) образуется в цитоплазме (в про цессе гликолиза). Мембрана митохондрий непроницаема для НАДН2, поэтому непосредст венный перенос атомов водорода из цитоплазмы в дыхательную цепь невозможен. Однако существуют механизмы переноса атомов водорода из цитоплазмы в митохондрию.

Глицеролфосфатная челночная система. Образованный в цитоплазме НАДН2 сначала используется для синтеза глицерофосфата из диоксиацетонфосфата, который проникает че рез мембрану в митохондрию. В митохондрии глицеролфосфат отдает НАДН2, после чего превращается в диоксиацетонфосфат, который возвращается в цитоплазму за новой порцией атомов водорода.

Малатаспартатная челночная сис тема. Образованный в цитоплазме НАДН2 сначала используется для превращения ок салоацетат в малат, который далее транс портируется в митохондрию.В митохонд рии малат окисляется до оксалоацетата с освобождением НАДН2. Обратный транс порт оксалоацетата из митохондрии в цито плазму возможен после его превращения в аспартат. Аспартат в цитоплазме превраща ется снова в оксалоацетат, который исполь зуется для превращения новой порции НАДН2 в малат. Авторское право на материалКопирование материалов допускается только с указанием активной ссылки на статью!ИнформацияПосетители, находящиеся в группе Гости, не могут оставлять комментарии к данной публикации.

Это процесс потребление клетками тканей организма кислорода, который участвует в биологическом окислении. Такой вид окисления называют аэробным окислением. Если конечным акцептором в цепи переноса водорода выступает не кислород, а другие вещества (например пировиноградная кислота), то такой тип окисления называют анаэробным.

Т.о. биологическое окисление — это дегидрирование субстрата с помощью промежуточных переносчиков водорода и его конечного акцептора. Биологическое окисление питательных веществ происходит в митохондриях. В них были обнаружены ферменты, участвующие в цикле лимонной кислоты, дыхательной цепи, окислительного фосфорилирования, в расщеплении жирных кислот и ряда аминокислот.

Дыхательная цепь (ферменты тканевого дыхания) — это переносчики протонов и электронов от окисляемого субстрата на кислород.

Тканевое дыхание

Окислитель — это соединение, способное принимать электроны. Такая способность количественно характеризуется окислительно-восстановительным потенциалом по отношению к стандартному водородному электроду, рН которого равен 7,0. Чем меньше потенциал соединения, тем сильнее его восстанавливающие свойства и наоборот.

Особенности тканевого дыхания

Процесс тканевого дыхания нельзя считать тождественным процессам биологического окисления (ферментативным процессам окисления различных субстратов, протекающим в животных, растительных и микробных клетках), поскольку значительная часть таких окислительных превращений в организме происходит в анаэробных условиях, т.е. без участия молекулярного кислорода, в отличие от дыхания тканей.

Т. о. любое соединение может отдавать электроны только соединению с более высоким окислительно-восстановительным потенциалом. В дыхательной цепи каждое последующее звено имеет более высокий потенциал, чем предыдущее.

Дыхательная цепь состоит из: НАД — зависимой дегидрогеназы; ФАД- зависимой дегидрогеназы; Убихинона (КоQ); Цитохрмов b, c, a+a3 .

НАД-зависимые дегидрогеназы. В качестве кофермента содержат НАД и НАДФ. Пиридиновое кольцо никотинамида способно присоединять электроны и протоны водорода.

ФАД и ФМН-зависимые дегидрогеназы содержат в качестве кофермента фосфорный эфир витамина В2 (ФАД).

Убихинон (КоQ) отнимает водород у флавопротеидов и превращается при этом в гидрохинон.

Цитохромы — белки хромопротеиды, способные присоединять электроны, благодаря наличию в своем составе в качестве простетических групп железопорфиринов. Они принимают электрон от вещества, являющегося немного боле сильным восстановителем, и передают его более сильному окислителю. Атом железа связан с атомом азота имидазольного кольца аминоксилоты гистидина с одной стороны от плоскости порфиринового цикла, а с другой стороны с атомом серы метионина. Поэтому потенциальная способность атома железа в цитохромах к связыванию кислорода подавлена.

В цитохроме с порфириновая плоскость ковалентно связана с белком через два остатка цистеина, а в цитохромах b и а, она ковалентно не связано с белком.

В цитохроме а+а3 (цитохромоксидазе) вместо протопорфирина содержатся порфирин А, который отличатся рядом структурных особенностей. Пятое координационное положение железа занято аминогруппой, принадлежащей остатку аминосахара, входящего в состав самого белка.

В отличии от гема гемолгобина атом железа в цитохромах может обратимо переходить из двух в трехвалентное состояние это обеспечивает транспорт электронов.

Потребности тканей в кислороде и его запасы

При увеличении активности какого-либо органа потребность его в кислороде увеличивается. При физической нагрузке потребление кислорода миокардом может увеличиться в 3 — 4 раза, а работающими скелетными мышцами — более чем в 20 — 50 раз по сравнению с покоем. Потребление кислорода почками возрастает при увеличении интенсивности реабсорбции ионов натрия.

Единственной тканью, в которой имеются запасы кислорода, является мышечная ткань. Роль депо кислорода играет пигмент миоглобин, способный обратимо связывать кислород. Однако содержание миоглобина в мышцах человека невелико, так, среднее содержание миоглобина в сердце составляет 4 мг/г. Поскольку 1 г миоглобина может связать примерно до 1,34 мл кислорода, запасы кислорода в сердце составляют около 0,005 мл кислорода на 1г ткани. Этого количества в условиях полного прекращения доставки кислорода к миокарду может хватить для того, чтобы поддерживать окислительные процессы лишь в течение примерно 3 — 4 секунд.

Миоглобин играет роль кратковременного депо кислорода. В миокарде кислород, связанный с миоглобином, обеспечивает окислительные процессы в тех участках, кровоснабжение которых на короткий срок снижается или полностью прекращается во время систолы.

В начальном периоде интенсивной мышечной нагрузки увеличенные потребности скелетных мышц в кислороде частично удовлетворяются за счет кислорода, высвобождающегося миоглобином. В дальнейшем возрастает мышечный кровоток, и поступление кислорода к мышцам вновь становится адекватным. Восполнение запасов оксимиоглобина является составной частью кислородного долга, который должен быть покрыт каждым мышечным волокном после окончания работы.

Основные причины, приводящие к кислородному голоданию (тканевой гипоксии), это понижение напряжения кислорода в артериальной крови (артериальная гипоксия), уменьшение кислородной емкости крови (анемия) и уменьшение кровоснабжения того или иного органа (ишемия).

Материалы: http://biofile.ru/chel/1880.html

+-Читать еще ≫Click to collapse

Дыхание тканевое (синоним клеточное дыхание) — совокупность окислительно-восстановительных процессов в клетках, органах и тканях, протекающих с участием молекулярного кислорода и сопровождающихся запасанием энергии в фосфорильной связи молекул АТФ . Тканевое дыхание является важнейшей частью обмена веществ и энергии в организме. В результате тканевого дыхания при участии специфических ферментов происходит окислительный распад крупных органических молекул — субстратов дыхания — до более простых и в конечном счете до СО2 и Н2О с высвобождением энергии. Принципиальным отличием тканевого дыхания от иных процессов, протекающих с поглощением кислорода (например, от перекисного окисления липидов), является запасание энергии в форме АТФ, не характерное для других аэробных процессов.

Процесс тканевого дыхания нельзя считать тождественным процессам биологического окисления (ферментативным процессам окисления различных субстратов, протекающим в животных, растительных и микробных клетках), поскольку значительная часть таких окислительных превращений в организме происходит в анаэробных условиях, т.е.

без участия молекулярного кислорода, в отличие от тканевого дыхания .

Большая часть энергии в аэробных клетках образуется благодаря тканевому дыханию , и количество образующейся энергии зависит от его интенсивности. Интенсивность тканевого дыхания определяется скоростью поглощения кислорода на единицу массы ткани; в норме она обусловлена потребностью ткани в энергии. Интенсивность тканевого дыхания наиболее высока в сетчатке глаза, почках, печени; она значительна в слизистой оболочке кишечника, щитовидной железе, яичках, коре головного мозга, гипофизе, селезенке, костном мозге, легких, плаценте, вилочковой железе, поджелудочной железе, диафрагме, сердце, скелетной мышце, находящейся в состоянии покоя. В коже, роговице и хрусталике глаза интенсивность тканевого дыхания невелика. Гормоны щитовидной железы, жирные кислоты и другие биологически активные вещества способны активизировать тканевое дыхание.

Интенсивность тканевого дыхания определяют полярографически (см. Полярография) или манометрическим методом в аппарате Варбурга. В последнем случае для характеристики тканевого дыхания используют так называемый дыхательный коэффициент — отношение объема выделившегося углекислого газа к объему кислорода, поглощенного определенным количеством исследуемой ткани за определенный промежуток времени.

Субстратами тканевого дыхания являются продукты превращения жиров, белков и углеводов (см. Азотистый обмен, Жировой обмен, Углеводный обмен), поступающих с пищей, из которых в результате соответствующих метаболических процессов образуется небольшое число соединений, вступающих в цикл трикарбоновых кислот — важнейший метаболический цикл у аэробных организмов, в котором вовлекаемые в него вещества претерпевают полное окисление. Цикл трикарбоновых кислот представляет собой последовательность реакций, объединяющих конечные стадии метаболизма белков, жиров и углеводов и обеспечивающих восстановительными эквивалентами (атомами водорода или электронами, передающимися от веществ-доноров веществам-акцепторам; у аэробов конечным акцептором восстановительных эквивалентов является кислород) дыхательную цепь в митохондриях (митохондриальное дыхание). В митохондриях происходит химическая реакция восстановления кислорода и сопряженное с этим процессом запасание энергии в виде АТФ, образующегося из АДФ и неорганического фосфата. Процесс синтеза молекулы АТФ или АДФ за счет энергии окисления различных субстратов называется окислительным, или дыхательным фосфорилированием. В норме митохондриальное дыхание всегда сопряжено с фосфорилированием, что связано с регуляцией скорости окисления пищевых веществ потребностью клетки в полезной энергии. При некоторых воздействиях на организм или ткани (например, при переохлаждении) происходит так называемое разобщение окисления и фосфорилирования, приводящее к рассеиванию энергии, которая не фиксируется в виде фосфорильной связи молекулы АТФ, а принимает вид тепловой энергии. Разобщающим действием обладают также гормоны щитовидной железы, жирные кислоты, 2,4-динитрофенол, дикумарин и некоторые другие вещества.

Тканевое дыхание в энергетическом отношении значительно более выгодно для организма, чем анаэробные окислительные превращения питательных веществ, например гликолиз. У человека и высших животных около 2 /3 всей энергии, получаемой из пищевых веществ, освобождается в цикле трикарбоновых кислот. Так, при полном окислении 1 молекулы глюкозы до СО2 и Н2О запасается 36 молекул АТФ, из которых лишь 2 молекулы образуются в процессе гликолиза.

Материалы: http://znaiu.ru/art/400096600.php

142-143

Метаболизм. Энергетика

Дыхательная цепь является частью процесса окислительного фосфорилирования (см. с. 126). Компоненты дыхательной цепи катализируют перенос электронов от НАДН + Н+ или восстановленного убихинона (QH2) на молекулярный кислород. Из-за большой разности окислительно-восстановительных потенциалов донора (НАДН + Н+ и, соответственно, QH2) и акцептора (О2) реакция является высокоэкзергонической (см. с. 24). Большая часть выделяющейся при этом энергии используется для создания градиента протонов (см. с. 128) и, наконец, для образования АТФ с помощью АТФ-синтазы.

Дыхательная цепь включает три белковых комплекса (комплексы I, III и IV), встроенных во внутреннюю митохондриальную мембрану, и две подвижные молекулы-переносчики — убихинон (кофермент Q) и цитохром с. Сукцинатдегидрогеназа, принадлежащая собственно к цитратному циклу, также может рассматриваться как комплекс II дыхательной цепи. АТФ-синтаза (см. с. 144) иногда называется комплексом V, хотя она не принимает участия в переносе электронов.

Комплексы дыхательной цепи построены из множества полипептидов и содержат ряд различных окислительно-восстановительных коферментов, связанных с белками (см. сс. 108, 144). К ним принадлежат флавин [ФМН (FMN) или ФАД (FAD), в комплексах I и II], железо-серные центры (в I, II и III) и группы гема (в II, III и IV). Детальная структура большинства комплексов еще не установлена.

Электроны поступают в дыхательную цепь различными путями. При окислении НАДН + Н+ комплекс I переносит электроны через ФМН и Fe/S-центры на убихинон. Образующиеся при окислении сукцината, ацил-КоА и других субстратов электроны переносятся на убихинон комплексом II или другой митохондриальной дегидрогеназой через связанный с ферментом ФАДН2 или флавопротеин (см. с. 166), При этом окисленная форма кофермента Q восстанавливается в ароматический убигидрохинон. Последний переносит электроны в комплекс III, который поставляет их через два гема b, один Fe/S-центр и гем с1 на небольшой гемсодержащий белок цитохром с. Последний переносит электроны к комплексу IV, цитохром с-оксидазе. Цитохром с-оксидаза содержит для осуществления окислительно-восстановительных реакций два медьсодержащих центра (CuA и CuB) и гемы а и а3, через которые электроны, наконец, поступают к кислороду. При восстановлении О2 образуется сильный основной анион О2-, который связывает два протона и переходит а воду. Поток электронов сопряжен с образованным комплексами I, III и IV протонным градиентом.

Перенос протонов комплексами I, III и IV протекает векторно из матрикса в межмембранное пространство.

ВОПРОС 5. Ферменты, принимающие участие в тканевом дыхании.

При переносе электронов в дыхательной цепи повышается концентрация ионов H+, т. е. понижается значение рН. В интактных митохондриях по существу только АТФ-синтаза (см. с. 144) позволяет осуществить обратное движение протонов в матрикс. На этом основано важное в регуляторном отношении сопряжение электронного переноса с образованием АТФ (см. с. 146).

Как уже упоминалось, все комплексы с I по V интегрированы во внутренней мембране митохондрий, тем не менее обычно они не контактируют друг с другом, так как электроны переносятся убихиноном и цитохромом с. Убихинон благодаря неполярной боковой цепи свободно перемещается в мембране. Водорастворимый цитохром с находится на внешней стороне внутренней мембраны.

Окисление НАДН (NADH) комплексом I происходит на внутренней стороне мембраны, а также в матриксе, где происходит также цитратный цикл и β-окисление — самые важные источники НАДН. В матриксе протекают, кроме того, восстановление O2 и образование АТФ (ATP). Полученный АТФ переносится по механизму антипорта (против АДФ) в межмембранное пространство (см. с. 214), откуда через порины проникает в цитоплазму.

Дыхание тканевое (синоним клеточное дыхание)— совокупность окислительно-восстановительных процессов в клетках, органах и тканях, протекающих с участием молекулярного кислорода и сопровождающихся запасанием энергии в фосфорильной связи молекул АТФ.

Обмен веществ и энергии

Тканевое дыхание является важнейшей частью обмена веществ и энергии в организме. В результате тканевого дыхания при участии специфических ферментовпроисходит окислительный распад крупных органических молекул — субстратов дыхания — до более простых и в конечном счете до СО2 и Н2О с высвобождением энергии. Принципиальным отличием тканевого дыхания от иных процессов, протекающих с поглощением кислорода (например, от перекисного окисления липидов), является запасание энергии в форме АТФ, не характерное для других аэробных процессов.

    Процесс тканевого дыхания нельзя считать тождественным процессам биологического окисления (ферментативным процессам окисления различных субстратов, протекающим в животных, растительных и микробных клетках), поскольку значительная часть таких окислительных превращений в организме происходит в анаэробных условиях, т.е. без участия молекулярного кислорода, в отличие от тканевого дыхания .

    Большая часть энергии в аэробных клетках образуется благодаря тканевому дыханию , и количество образующейся энергии зависит от его интенсивности. Интенсивность тканевого дыхания определяется скоростью поглощения кислорода на единицу массы ткани; в норме она обусловлена потребностью ткани в энергии. Интенсивность тканевого дыхания наиболее высока в сетчатке глаза, почках, печени; она значительна в слизистой оболочке кишечника, щитовидной железе, яичках, коре головного мозга, гипофизе, селезенке, костном мозге, легких, плаценте, вилочковой железе, поджелудочной железе, диафрагме, сердце, скелетной мышце, находящейся в состоянии покоя. В коже, роговице и хрусталике глаза интенсивность тканевого дыхания невелика. Гормоны щитовидной железы, жирные кислоты и другие биологически активные вещества способны активизировать тканевое дыхание.

    Интенсивность тканевого дыхания определяют полярографически (см. Полярография) или манометрическим методом в аппарате Варбурга. В последнем случае для характеристики тканевого дыхания используют так называемый дыхательный коэффициент — отношение объема выделившегося углекислого газа к объему кислорода, поглощенного определенным количеством исследуемой ткани за определенный промежуток времени.

    Субстратами тканевого дыхания являются продукты превращения жиров, белков и углеводов (см. Азотистый обмен, Жировой обмен, Углеводный обмен), поступающих с пищей, из которых в результате соответствующих метаболических процессов образуется небольшое число соединений, вступающих в цикл трикарбоновых кислот — важнейший метаболический цикл у аэробных организмов, в котором вовлекаемые в него вещества претерпевают полное окисление. Цикл трикарбоновых кислот представляет собой последовательность реакций, объединяющих конечные стадии метаболизма белков, жиров и углеводов и обеспечивающих восстановительными эквивалентами (атомами водорода или электронами, передающимися от веществ-доноров веществам-акцепторам; у аэробов конечным акцептором восстановительных эквивалентов является кислород) дыхательную цепь в митохондриях (митохондриальное дыхание). В митохондриях происходит химическая реакция восстановления кислорода и сопряженное с этим процессом запасание энергии в виде АТФ, образующегося из АДФ и неорганического фосфата. Процесс синтеза молекулы АТФ или АДФ за счет энергии окисления различных субстратов называется окислительным, или дыхательным фосфорилированием. В норме митохондриальное дыхание всегда сопряжено с фосфорилированием, что связано с регуляцией скорости окисления пищевых веществ потребностью клетки в полезной энергии. При некоторых воздействиях на организм или ткани (например, при переохлаждении) происходит так называемое разобщение окисления и фосфорилирования, приводящее к рассеиванию энергии, которая не фиксируется в виде фосфорильной связи молекулы АТФ, а принимает вид тепловой энергии. Разобщающим действием обладают также гормоны щитовидной железы, жирные кислоты, 2,4-динитрофенол, дикумарин и некоторые другие вещества.

    Тканевое дыхание в энергетическом отношении значительно более выгодно для организма, чем анаэробные окислительные превращения питательных веществ, например гликолиз. У человека и высших животных около 2/3 всей энергии, получаемой из пищевых веществ, освобождается в цикле трикарбоновых кислот. Так, при полном окислении 1 молекулы глюкозы до СО2 и Н2О запасается 36 молекул АТФ, из которых лишь 2 молекулы образуются в процессе гликолиза.

Внимание!    Статья ‘Дыхание тканевое‘ приведена исключительно в ознакомительных целях и не должна применяться для самолечения

Оставьте комментарий