Для метана характерна реакция

ший!Получение. Основной промышленный способ получения диенов — дегидрирование алканов. Бутадиен-1,3 (дивинил) получают из бутана:  t,Сr2О3  СН3-СН2-СН2-СН3 → СН2=СН-СН=СН2 + 2Н2,  а изопрен (2-метилбутадиен-1,3) — из 2-метилбутана:  t, Сr2О3  СН3-СН(СН3)-СН2-СН3 → СН2=С(СН3)-СН=СН2+2Н2. Бутадиен-1,3 можно также получать по реакции Лебедева путем одновременного дегидрирования и дегидратации этанола: t, ZnO, Al2O3  2С2Н5ОН → СН2=СН-СН=СН2 + Н2 + 2Н2О. Важнейшее свойство диенов — их способность к полимеризации, которая используется для получения синтетических каучуков.

Содержание

для метана характерной является реакция: А.Дегидратации Б.Замещения В.Присоединения Г.Этерификации

При полимеризации бутадиена-1,3, которая протекает как 1,4-присоединение, получают бутадиеновый каучук:  nСН2=СН-СН=СН2 → (-СН2-СН=СН-СН2-)n. Использование металлоорганических катализаторов в этой реакции позволяет получить каучук с регулярным строением, в котором все звенья цепи имеют цисконфигурацию. Аналогичная реакция с изопреном дает синтетический изопреновый каучук, который по строению и свойствам близок к природному каучуку:  nСН2=С(СН3)-СН=СН2 → (-СН2-С(СН3)=СН-СН2-)n.

Химические свойства метана

Атом углерода в молекуле метана находится в состоянии sp3- гибридизации.В результате перекрывания четырёх гибридных орбиталей атома углерода с s-орбиталями атомов водоорда образуется весьма прочная молекула метана.
Метан-газ без цвета и запаха,легче воздуха,малорастворим в воде.Предельные углеводороды способны гореть,образуя оксид углерода (IV) и воду.Метан горит бледным синеватым пламенем: CH4+2O2=2H2O
В смеси с воздухом (или с кислородом,особенно в соотношении по объему 1:2, что видно из уравнения реакции) метан образует взрывчатые смеси.Поэтому он опасен как в быту (утечка газа через краны),так и в шахтах.При неполном сгорании метана образуется сажа.Так её получают в промышленных условиях.В присутствии катализаторов при окислении метана получают метиловый спирт и формальдегид
При сильном нагревании метан распадается по уравнению:CH4=C+2H2
В печах специальной конструкции распад метана может быть осуществлён до промежуточного продукта-ацителена:
2CH4=C2H 2+3H2
Для метана характерны реакции замещения.На свету или обычной температуре галогены-хлор и бром-постепенно (по стадиям) вытесняют из молекулы метана водород,образуя так называемые галогенопроизводные.Атомы хлора замещяют атомы водорода в ней с образованием смеси различных соединенний:
CH3Cl-хлорметана (хлористого метила),CH2Cl2-дихлорметана,CHCl3-трихлорметана,CCl4-тетрахлорметана
Из этой смеси каждое соединение может быть выделено.Важное значение имеют хлороформ итетрахлорметан как растворители смол,жиров,каучука и других органических веществ.
Образование галогенопроизводных метана протекают по цепному свободнорадикальному механизму.Под действием света молекулы хлора распадаются на неорганические радикалы:Cl2=2Cl
Неорганический радикал Cl отрывает от молекулы метана атом водорода с одним электроном,образуя HCl и свободный радикал CH3 H H
H:C_| H+Cl=H:C +HCl
H| H
Cвободный радикал взаимодействует с молекулой хлора Cl2 ,образуя галогенопроизводное и радикал хлора:
CH3+Cl_| Cl=CH3-Cl+Cl
|
Метан при обычной температуре обладает большей стойкостью к кислотам,щелочам и многим окислителям.Однако он вступает в реакцию с азотной кислотой:
CH4+HNO3=CH3NO2 +H2O
нитрометан
Метан не способен к реакциям присоединения,поскольку в его молекуле все валентности насыщены.
Приведенные реакции замещения сопровождаются разрывом связей C-H.Однако известны процессы,при которых происходит не только расщепление связей C-H,но и разрыв цепи углеродных атомов ( у гомологов метана).Эти реакции протекают при высоких температурах и в присутствии катализаторов.Например:
C4H10+H2 -процесс дегидрогенизации
C4H10-|
C2H6 + C2H4-крекинг

Получение метана.
Метан широко распространён в природе.Он является главной составной частью многих горючих газов как природных (90-98%),так и искусственных,выделяющихся при сухой перегонке дерева ,торфа,каменного угля,а также при крекинге нефти
Метан выделяется со дна болот и из каменноугольных пластов в рудниках,где он образуется при медленном разложении растительных остатков без доступа воздуха,Поэтому метан часто называют болотным газом или рудничным газом
В лабороторных условиях метан получают при нагревании смесси ацетата натрия с гидроксидом натрия:
200 *C
CH3|COONa +NaO|H=Na2CO3 + CH4|
или при взаимодействии карбида алюминия с водой:
Al4C3 +12H2O=4Al(OH)3 +3CH4|
В последнем случае метан получается весьма чистым.
Метан может быть получен из простых веществ при нагревании в присутствии катализатора: Ni
C+2H2=CH4

А также синтезом на основе водяного газа
Ni
CO+3H2 =CH4 +H2O
Гомологи метана,как и метан ,в лабораторных условиях получают прокаливанием солей соответствующих органических кислот с щелочами.Другой способ-реакция Вюрца , т.е. нагревание моногалогенопроизводных с металлическим натрием,например
C2H5 |Br+2Na+Br|C2H5= C2H5-C2H5+2NaBr

В технике для получения синтетического бензина (смесь углеводородов,содержащих 6-10 атомов углерода) применяют синтез из оксида углерода (II) и водорода в присутствии катализатора (соединения кобальта) и при повышенном давлении.Процесс можно выразить уравнением:
200*С
nCO+(2n+1)H2=CnH2n+2+nH2O

Применение алканов
Благодаря большой теплотворной способности метан в больших количествах расходуется в качестве топлива (в быту-бытовой газ и в промешленности.Широко применяются получаемые из него вещества:водород,ацителен,сажа.Он служит исходным сырьём для получения формальдегида,метилового спирта,а также различных синтетических продуктов
Большое промышленное значение имеет окисление высших предельных углеводородов-парафинов с числом углеродных атомов 20-25.Этим путём получают синтетические жирные кислоты с различной длиной цепи,которые используются для производства мыл,различных моющих средств,смазочных материалов,лаков и эмалей.
Жидкие углеводороды используются как горючее (они входят в состав бензина и керосина).Алканы широко используются в органическом синтезе.

Алканы

Углеводороды — это органические соединения, состоящие из двух элементов — углерода и водорода.
Алканы — название предельных углеводородов по международной номенклатуре. Парафины — исторически сохранившееся название предельных углеводородов.

В молекулах этих соединений все валентные связи углерода и водорода полностью насыщены. Вот почему эти углеводороды не способны к реакциям присоединения. В этой связи данному классу углеводородов можно дать такое определение:
Углеводороды с общей формулой CnH2n+2, которые не присоединяют водород и другие элементы, называются предельными углеводородами или алканами (парафинами).

Простейшим представителем предельных углеводородов является метан.

Строение молекулы метана.

Молекулярная формула метана CH4.
Так как в гибридизации участвуют s — электрон и три p — электрона, то такой ее вид называется sp3 — гибридизацией.
Валентный угол: 109 градусов.

Гомологи метана.

Существует много углеводородов, сходных с метаном, т.е. гомологов метана (греч. "гомолог" — сходный). В из молекулах имеются два, три, четыре и более атомов углерода. Каждый последующий углеводород отличается от предыдущего группой атомов CH2. Например, если мысленно к молекуле метана CH4 добавить группу CH2 (группу CH2 называют гомологической разностью), то получается следующий углеводород ряда метана — этан C2H6 и т.д.

Гомологический рад метана.

CH4 — Метан

C2H6 — Этан

C3H8 — Пропан

C4H10 — Бутан

C5H12 — Пентан

C6H14 — Гексан

C7H16 — Гептан

C8H18 — Октан

C9H20 — Нонан

C10H22 — Декан

Изомерия и номенклатура.

Для составления названий предельных углеводородов с разветвленной цепью принимают, что во всех молекулах атомы водорода замещены различными радикалами.

для метана характерной является реакция: А.Дегидратации Б.Замещения В.Присоединения Г.Этерификации

Для определения названий данного углеводорода придерживаются определенного порядка:

  1. Выбирают в формуле наиболее длинную углеродную цепь и символы атомов углерода нумеруют, начиная с того конца цепи, к которому ближе разветвление.
  2. Называют радикалы (начиная с простейшего) и при помощи цифр указывают место у нумерованных атомов углерода. Если у одного и того же атома углерода находятся два одинаковых радикала, тогда номер повторяют дважды. Число одинаковых радикалов указывают при помощи чисел на греческом языке ("ди" — два, "три" — три, "тетра" — четыре и т.д.)
  3. Полное название данному углеводороду дают по числу атомов углерода в нумерованной цепи.

Нахождение в природе.

Простейший представитель предельных углеводородов — метан — образуется в природе в результате разложения остатков растительных и животных организмов без доступа воздуха. Этим объясняется появление пузырьков газа в заболоченных водоемах. Иногда метан выделяется из каменноугольных пластов и накапливается в шахтах. Метан составляет основную массу природного газа (80 -97%). Он содержится и в газах, выделяющихся при добыче нефти. В состав природного газа и нефтяных газов входят также этан C2H6, пропан C3H8, бутан C4H10 и некоторые другие. Газообразные, жидкие и твердые предельные углеводороды содержаться в нефти.

Физические свойства.

Метан — газ без цвета и запаха, почти в 2 раза легче воздуха, мало растворим в воде. Этан, пропан, бутан при нормальных условиях — газы, от пентана до пентадекана — жидкости, а следующие гомологи — твердые вещества.
С увеличением относительных молекулярных масс предельных углеводородов закономерно повышаются их температуры кипения и плавления.

Другие заметки по химии

Поиск Лекций

Химические свойства алканов (метана, этана): горение, замещение, разложение, дегидрирование.

Все связи в алканах малополярные, по этому для них характерны радикальные реакции. Отсутствие пи-связей делает невозможными реакции присоединения.

Для алканов характерны реакции замещения , отщепления, горения.

для метана характерной является реакция: А.Дегидратации Б.Замещения В.Присоединения

Реакции замещения

А) с галогенами ( с хлором Cl2 –на свету, Br2- при нагревании) реакция подчиняется правилу Марковника (Правила Марковникова) — в первую очередь галоген замещает водород у наименее гидрированного атома углерода. Реакция проходит поэтапно — за один этап замещается не более одного атома водорода.

Труднее всего реагирует иод, и притом реакция не идет до конца, так как, например, при взаимодействии метана с йодом образуется йодистый водород, реагирующий с йодистым метилом с образованием метана и йода(обратимая реакция):

CH4 + Cl2 → CH3Cl + HCl (хлорметан)

CH3Cl + Cl2 → CH2Cl2 + HCl (дихлорметан)

CH2Cl2 + Cl2 → CHCl3 + HCl (трихлорметан)

CHCl3 + Cl2 → CCl4 + HCl (тетрахлорметан)

Б) Нитрование (Реакция Коновалова)

Алканы реагируют с 10% раствором азотной кислоты или оксидом азота N2O4 в газовой фазе при температуре 140° и небольшом давлении с образованием нитропроизводных. Реакция так же подчиняется правилу Марковникова. Один из атомов водорода заменяется на остаток NO2 (нитрогруппа) и выделяется вода

Реакции отщепления

А) дегидрирование –отщепление водорода. Условия реакции катализатор –платина и температура.

CH3- CH3→ CH2= CH2 + Н2

Б) крекинг процесс термического разложения углеводородов, в основе которого лежат реакции расщепления углеродной цепи крупных молекул с образованием соединений с более короткой цепью. При температуре 450–700 oС алканы распадаются за счет разрыва связей С–С (более прочные связи С–Нпри такой температуре сохраняются) и образуются алканы и алкены с меньшим числом углеродных атомов

C6H14 C2H6 + C4H8

В) полное термическое разложение

СН4 C + 2H2

Реакции окисления

А) реакция горения При поджигании (t = 600oС) алканы вступают в реакцию с кислородом, при этом происходит их окисление до углекислого газа и воды.

СnН2n+2 + O2 ––>CO2 + H2O + Q

СН4 + 2O2 ––>CO2 + 2H2O + Q

Б) Каталитическое окисление— при относительно невысокой температуре и с применением катализаторов сопровождается разрывом только части связей С–Спримерно в середине молекулы и С–Н и используется для получения ценных продуктов: карбоновых кислот, кетонов, альдегидов, спиртов.

Например, при неполном окислении бутана (разрыв связи С2–С3) получают уксусную кислоту

4. Реакции изомеризациихарактерны не для всех алканов. Обращается внимание на возможность превращения одних изомеров в другие, наличие катализаторов.

С4Н10 C4H10

5.. Алканы с основной цепью в 6 и более атомов углерода также вступают в реакцию дегидроциклизации, но всегда образуют 6-членный цикл (циклогексан и его производные). В условиях реакции этот цикл подвергается дальнейшему дегидрированию и превращается в энергетически более устойчивый бензольный цикл ароматического углеводорода (арена).

©2015-2018 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Нарушение авторских прав и Нарушение персональных данных

Зависимость направления химических реакций
с участием органических веществ от условий

Органические вещества в массе своей обладают большой химической устойчивостью, т.е. они относительно инертны, с трудом вступают в химические взаимодействия. Реакции между неорганическими веществами большей частью протекают практически мгновенно (обмен между ионами). В то же время реакции между органическими соединениями, как правило, идут медленно. Часто их можно остановить на стадии образования промежуточных продуктов, т.е. наблюдать серию превращений между исходными веществами и конечными продуктами.

По этой причине решающее значение имеют внешние условия: температура, давление, катализатор. Рассмотрим некоторые примеры, подтверждающие влияние внешних условий на ход химических реакций с участием органических веществ.

Термическое разложение метана

Все органические соединения в большей или меньшей степени неустойчивы при высоких температурах, а при сильном прокаливании разрушаются. Метан при сильном нагревании (выше 1000°С) разлагается на углерод и водород:

Практически такой процесс осуществляют, сжигая метан при недостатке кислорода. В реакции (1) углерод выделяется в виде сажи, имеющей большое техническое значение.

В ходе реакции (1) одним из промежуточных продуктов является ацетилен (этин), но он сразу разлагается на элементы. При более высокой температуре (1500 °С) и быстром охлаждении ацетилен удается предохранить от разложения, и в этом случае термическое разложение метана идет в соответствии с уравнением:

В одном из способов получения ацетилена этот процесс осуществляется следующим образом. В цилиндрический реактор, выложенный внутри огнеупорным кирпичом, с большой скоростью пропускают предварительно подогретый метан (или природный газ) и кислород в объемном соотношении примерно 2:1. Газы смешиваются в особой камере реактора и через узкие каналы проходят в реакционную камеру. В ней часть метана сгорает, в результате чего устанавливается температура около 1500 °С, а большая часть разлагается на ацетилен и водород в соответствии с уравнением реакции (2).

Газы поступают в реакционную камеру с огромной скоростью, в результате чего продукты реакции находятся в зоне высокой температуры тысячные доли секунды. Проходя далее, они подвергаются интенсивному охлаждению водой, при этом осуществляется стабилизация полученного ацетилена.

В продуктах реакции кроме ацетилена и водорода содержатся также сажа, оксид углерода(IV) и некоторые другие вещества.

Дегидратация одноатомных спиртов

При нагревании с концентрированной серной кислотой, являющейся катализатором, одноатомные спирты подвергаются дегидратации, т.е. отщепляют воду. В зависимости от условий процесс дегидратации протекает по-разному.

При нагревании этанола с концентрированной серной кислотой выше 160 °С отщепляется вода и получается этилен:

Если же нагревать этанол с концентрированной серной кислотой до температуры около 140 °С и брать меньше серной кислоты, чем для получения этилена, получается диэтиловый эфир:

принадлежащий к классу простых эфиров.

Интересно отметить, что указанный эфир был получен нагреванием спирта с серной кислотой еще в XVI в. Поскольку предполагалось, что в его состав входит сера, он получил название серного эфира. Это название иногда применяется и в настоящее время.

Взаимодействие галогеналканов с растворами щелочей

При действии спиртовых растворов щелочей на галогенпроизводные алканов образуются алкены:

Если же при действии на галогеналканы использовать разбавленные водные растворы щелочей, то получаются одноатомные спирты:

Необходимо отметить, что реакция (6) не идет до конца, однако, используя специальные приемы, этого можно добиться.

Взаимодействие алкенов с галогенами

Алкены легко присоединяют галогены. При пропускании пропена через бромную воду происходит ее обесцвечивание вследствие образования 1,2-дибромпропана:

СН2=СН–СН3 + Вr2 СН2Вr–СНВr–СН3.     (7)

Однако в зависимости от условий, в которых протекает реакция, наряду с продуктами присоединения галогена к алкену могут образовываться и продукты замещения.

Если хлорируемый алкен и хлор предварительно нагреть до 200–600 °С и быстро смешать в горячем состоянии, то с хорошим выходом идет реакция замещения:

СН2=СН–СН3 + Сl2 СН2=СН–СН2Сl + НСl.    (8)

Для каждого гомолога этилена можно найти температуру, выше которой происходит главным образом реакция замещения, а ниже этой пограничной температуры протекает преимущественно реакция присоединения.

Из сказанного следует, что замещение имеет место в насыщенных звеньях непредельного углеводорода, а присоединение происходит к углеродным атомам по месту двойной связи.

Из приведенных примеров видно влияние условий на направление химических реакций с участием органических веществ. Поэтому мы считаем целесообразным ставить учащимся и абитуриентам оценку «отлично» только в том случае, когда приведены точные условия осуществления конкретной реакции, а не формальное указание повышенной температуры и присутствия катализатора.

Литература

Березин Б.Д., Березин Д.Б. Курс современной органической химии. М.: Высшая школа, 1999, 768 с.; Хотинский Е.С.

Для метана характерной является реакция: а.Дегидратации б.замещения в.присоединения г.этерификации

Курс органической химии. Харьков: Изд-во Харьк. гос. ун-та, 1955, 706 с.

Ю.В.Голубков,
доцент кафедры
общей и прикладной химии
МГТУ «Станкин»;
Г.Н.Голубкова,
преподаватель химии
средней школы № 1352
(Москва)

Оставьте комментарий