Чем питаются микробы

Категория: Животные

Для дыхания живым. существам нужен воздух, точнее, содержащийся в нем кислород. Воздух необходим и большинству микробов. Таких микробов называют аэробами. Но есть бактерии, живущие без воздуха. Их называют анаэробами. Кислород воздуха для них — яд.

В природных условиях аэробы живут в поверхностных, рыхлых слоях почвы, на поверхности пищевых продуктов, в верхних слоях воды. Анаэробы обитают в более глубоких слоях почвы, в иле, в толще воды — там, где свободного кислорода нет совсем или же его недостаточно для других существ.

Многие микроорганизмы способны вызывать брожение. Брожение представляет собой особый вид дыхания, свойственный микробам. При сбраживании, особенно сахаристых веществ, высвобождается энергия, необходимая для существования микроорганизмов. Но в процессе брожения без доступа кислорода воздуха микроорганизмы используют только небольшую долю энергии, скрытой в веществах, которые они разлагают лишь частично. При дыхании сахар в организме используется полностью. В результате получается вода и углекислый газ. Во время брожения дрожжи разлагают сахар не полностью, превращая его в спирт и углекислый газ.

При брожении, вызванном дрожжами, жидкость пенится от энергично выделяемого углекислого газа. Пузырьки газа со дна бутылки с хлебным квасом свободно поднимаются к поверхности. Но в вязкой массе, например в тесте, они лишь с трудом и далеко не полностью выбираются на поверхность. Вот почему тесто поднимается на дрожжах, точнее говоря, его поднимают пузырьки углекислого газа. В брожении, происходящем в ржаном тесте, помимо дрожжей принимают большое участие молочнокислые бактерии. Они превращают сахаристые вещества теста в молочную кислоту. При изготовлении всевозможных молочных продуктов — сметаны, простокваши, варенца, кумыса, кефира, а также при силосовании кормов тоже действуют различные молочнокислые бактерии.

Если в молоко проникнут гнилостные микробы, то через несколько часов оно приобретет неприятный запах и вкус. Микробы, разлагающие жиры, придают молоку или сливочному маслу прогорклый привкус. Маслянокислые бактерии превращают молоко в пенящуюся, взмученную массу с острым, неприятным запахом — они разлагают сахар с образованием дурнопахнущей масляной кислоты, водорода и углекислого газа. Молочнокислые бактерии убивают гнилостных, маслянокислых и разлагающих жиры микробов. Вызывая скисание молока, они тем самым предохраняют его от порчи.

Уксуснокислые бактерии окисляют спирт, в результате образуются уксусная кислота и углекислый газ. Многие микробы питаются преимущественно органическими веществами. В живую ткань они не вторгаются и потому не вызывают заболеваний живых существ. Эти микробы называют сапрофитами. Среди них есть и злостные вредители, разлагающие пищевые продукты. Некоторые сапрофиты (различные бактерии, дрожжи, плесени), как мы уже знаем, используются в пищевой промышленности. Они вызывают брожение Сахаров, из которых они черпают необходимую для своей жизнедеятельности энергию, а также получают необходимое питание (углеводы, азотистые вещества и минеральные соли).

Серобактерия.

Очень большую роль в природе играют гнилостные бактерии, или аммонификаторы. Они разлагают белковые вещества остатков растений и животных и превращают их в аммиак, воду, сероводород и углекислый газ. Без них жизнь на Земле стала бы невозможной. Ведь эти бактерии разлагают сложное органическое вещество на простые минеральные соединения, которыми питаются зеленые растения. Образовавшийся аммиак непосредственно используется зеленым растением или подвергается процессу нитрификации (окислению с образованием солей азотной кислоты) особыми бактериями-нитрификаторами, о которых мы расскажем позже.

Для большинства животных и растений нефть вредна. Нефть, растворенная в воде, вызывает у рыб отравление. Между тем в почвах нефтеносных районов обнаружено значительное количество микробов, способных использовать для своего питания различные вещества, составляющие нефть,— керосин, парафин и др. В результате их деятельности через 7 — 10 дней в водоемах слой нефти толщиной в миллиметр почти целиком исчезает.

Советские микробиологи предложили использовать таких микробов как разведчиков нефти. Обычно из глубины залежей нефти просачиваются на поверхность Земли нефтяные газы. При малейших следах подобных газов микробы-разведчики, помещенные в специальные колбочки с питательной средой, начинают быстро размножаться. В колбе на поверхности жидкости появляется пленка, а питательный раствор сильно мутнеет. Следовательно, в этом месте можно искать нефть. Промышленное значение приобретает вскармливание особых микроорганизмов углеводородами нефти, горючих газов для получения дешевых белковых кормов.

С. Н. Виноградский.

Микробы, способные разлагать нефть, каучук, бетон, клетчатку, вызывать коррозию металлических труб, приносят неисчислимые убытки. Установлено, что одна из причин мелких трещин на асфальтовых покрытиях дорог — разрушительное действие микроорганизмов. Приходится изыскивать противомикробные вещества, которые могли бы защищать эти покрытия. В бензине, в дизельном топливе вследствие жизнедеятельности особых микроорганизмов возникают осадки, которые могут привести к порче топливных двигателей, баков и насосов. Достаточно добавить в топливо небольшое количество специальных химических препаратов, чтобы подавить развитие этих микроорганизмов.

В борьбе с подобными микроорганизмами все большее значение приобретает широкое применение синтетических полимерных материалов. Многие из них оказываются «не по зубам» даже самым изощренным микробам-разрушителям. Тысячи километров кабеля одевают легкие и бактериоустойчивые полиэтиленовые и хлорвиниловые «рубашки». Созданы волокна со специальными свойствами. Они не только устойчивы к гниению, но и обладают бактериоубивающим свойством.

Основная масса растения состоит из вещества, называемого клетчаткой или целлюлозой. В ее разложении главную роль играют особые целлюлозораз-рушающие микробы. В иле, в почве, особенно лесной, в навозе — повсюду, где скопляются растительные остатки, появляется несметное количество этих микробов. Весьма полезна и даже жизненно необходима деятельность таких микробов в кишечнике травоядных животных: разлагая там клетчатку, они способствуют перевариванию растительной массы.

Но иногда эти бактерии и грибы вредят хозяйству человека, например они разрушают рыболовные сети, шпалы. Для предохранения от порчи сети пропитывают особым противомикробным составом. В последнее время стали применять капроновые сети: целлюлозоразрушающие бактерии на них не действуют. Если не принять защитных мер, книги и старинные редчайшие рукописи могут быть изъедены целлюлозоразрушающими бактериями и плесневыми грибами. Поэтому книгохранилища и архивы, где хранятся ценные рукописи, время от времени подвергают окуриванию сернистым газом.

В прошлом веке биологи заинтересовались странными свойствами одной группы микробов: внутри клеток этих бактерий были обнаружены кристаллики серы. Русский ученый С. Н. Виноградский в 1887 г. доказал, что подобные бактерии, окисляя сероводород, используют образующуюся при этом энергию на построение органических соединений из углекислого газа и воды. В результате такого окисления сероводорода получается серная кислота или сера, кристаллики которой и обнаруживаются в клетке.

К микробам, использующим энергию, освобожденную при окислении минеральных веществ, относятся также бактерии-нитрификаторы. Они способны превращать аммиак в селитру. Эти бактерии, как и зеленые растения, создают органические вещества из воды, углекислого газа и минеральных солей. Но, в отличие от зеленых растений, нитрификаторы, как и серобактерии, не нуждаются в солнечной энергии. Их можно встретить даже в бесплодных песках, в трещинах скал, в темных ущельях, лишенных каких-либо признаков жизни. В природных условиях они образуют огромное количество селитры из аммиака, выделяющегося при разложении животных и растительных остатков. В хорошо проветриваемой почве за год может быть образовано на гектаре более четверти тонны селитры — ценного азотного удобрения. В некоторых местах, где растительность скудна или ее совсем нет, а дождей почти не бывает, накапливающаяся селитра не вымывается из почвы. Здесь образуются залежи селитры.

В районе Бухары почва глинистых пустынь нередко содержит до 2% селитры. Особенно много ее на местах старых городищ, древних караван-сараев, кладбищ. И это не случайно: скопление органических остатков в этих районах послужило для микробов сырьем при образовании селитры.

Свободный атмосферный азот растения усваивать не могут: он им недоступен. Но во многих почвах поселяются особые бактерии, а также мельчайшие синезеленые водоросли-азотоусвоители, которые усваивают азот из воздуха. И там, где условия для развития таких микробов благоприятны, растения не испытывают азотного голодания. Впервые эти бактерии-азотоусвоители были открыты С. Н. Виноградским в 1893 г.

Голландский ученый Бейеринк выделил из садовой почвы микроб азотобактер. При благоприятных условиях микробы этого вида за лето накапливают в почве на одном гектаре 30—70 кг азота, частично возмещая его убыль после уборки урожая. Азотобактер — свободноживущий азотоусвоитель. Его существование не зависит от какого-либо растения — он вольный житель почвы. Есть и другие азотоусвоители, жизнь которых, в отличие от азотобактера, теснейшим образом связана с растением. Уже давно известно, что бобовые растения — вика, клевер, горох, фасоль, люцерна — обогащают почву азотом. Если выдернуть из почвы бобовое растение, нетрудно заметить на его корнях клубеньки. В них-то и живут микробы-азотоусвоители. Азот они усваивают из воздуха и частично отдают его растениям. После отмирания бактерий накопленный в клубеньках азот остается в почве в виде солей и легко усваивается любыми растениями, посеянными на этом поле.

Некоторые синезеленые водоросли также являются азотоусвоителями. Размножаясь в огромном количестве на рисовых полях, они обогащают почву азотом, соперничая даже с азотобактером.

В наше время широко применяются искусственные живые удобрения — нитрагин, состоящий из живых клубеньковых бактерий, и азотобактерин, представляющий собой живую массу азотобактера.

Интересное

Питание микробов

Микробы питаются белками, жирами углеводами, минеральными веществами, которые проникают в клетку в растворенном виде через оболочку путем осмоса (процесс диффузии через полупроницаемую оболочку).

Как дышат и питаются микробы

Белки и сложные углеводы усваиваются микробами только после расщепления их на простые составные части ферментами, выделенными микроорганизмами.

Для осуществления нормального питания микробов необходимо определенное соотношение концентрации веществ как внутри клетки микроорганизма, так и в окружающей среде. Наиболее благоприятная концентрация — содержание 0,5 % хлористого натрия в окружающей среде. В среде, где концентрация растворимых веществ намного выше (2-10 %), чем в клетке, вода из клетки переходит в окружающую среду, происходит обезвоживание и сморщивание цитоплазмы, что приводит к гибели микроба. Это свойство микроорганизмов используют при консервировании продуктов сахаром (варенье) или солью (посол мяса, рыбы).

По способу питания микробы делят на аутотрофные — усваивающие углерод и азот из неорганических соединений; гетеротрофные, к которым относятся сапрофиты, — усваивающие готовые органические соединения мертвой природы (гнилостные бактерии, плесневые грибы, дрожжи); паратрофные (паразиты) — нуждающиеся в сложных органических соединениях живых организмов (болезнетворные микробы).

Дыхание микробов

Дыхание микробам необходимо для получения энергии, обеспечивающей все жизненные процессы. По способу дыхания микробы делят на аэробы, нуждающиеся в кислороде воздуха (плесневые грибы, уксуснокислые бактерии); анаэробы, живущие и развивающиеся при отсутствии кислорода (ботулинус, маслянокислые бактерии), условные (факультативные) анаэробы, развивающиеся как в присутствии кислорода, так и без него (молочнокислые бактерии, дрожжи).

Влияние внешней среды на развитие микроорганизмов и распространение их в природе

Жизнедеятельность микробов находится в зависимости от окружающей среды. Создавая те или иные условия в среде, где развиваются микробы, можно способствовать развитию полезных и подавлять жизнедеятельность вредных микроорганизмов. Пищевые продукты могут хорошо сохраняться только при создании неблагоприятных условий для развития в них вредных микробов.

Основными факторами, влияющими на жизнедеятельность микробов, являются: температура, влажность, действие света, характер питательной среды.

Температура

Все микробы имеют максимальную, оптимальную и минимальную температуру своего развития. Оптимальная температура для большинства микроорганизмов 25—35°С. Поэтому пищевые продукты в этих условиях быстро портятся.

Минимальный температурный предел у разных микробов различен. Понижение температуры замедляет или прекращает развитие микробов, но не убивает их. Поэтому при охлаждении (6°С) и замораживании (от -6 до -20°С) пищевые продукты хорошо сохраняются, но при оттаивании и обработке их микробы вновь начинают свою деятельность.

Максимальная температура (45—50°С) также приостанавливает развитие микробов. Дальнейшее повышение температуры ведет к гибели вегетативных клеток, а затем и спор. На губительном действии высоких температур на микробы основаны пастеризация (60—90°С) и стерилизация (100— 120°С) пищевых продуктов.

В зависимости от температуры развития микробы делят на психрофильные (холодоустойчивые), у которых оптимум развития 15°С (плесневые грибы); мезофильные (развивающиеся при средней температуре), у которых оптимум 25—37° С (болезнетворные бактерии, дрожжи); термофильные (теплолюбивые), у которых оптимум 50° С (молочнокислые бактерии).

Влажность

Повышенная влажность увеличивает количество растворимых питательных веществ, следовательно, способствует питанию и развитию микробов. Поэтому пищевые продукты, содержащие большое количество влаги (молоко, мясо, рыба, овощи, плоды), быстро портятся.

Нижний предел влажности среды для развития бактерий 20 %, а плесневых грибов — 15 %. Поэтому надежным способом сохранения продуктов от порчи является их сушка до влажности ниже указанного предела.

Среда с повышенной концентрацией веществ. Как уже было сказано, микробы живут в среде с небольшой концентрацией растворимых веществ. При повышении концентрации соли (до 10—20 %) и сахара (до 60—70 %) многие микробы полностью прекращают свое развитие (гнилостные, молочнокислые) в результате обезвоживания микробных клеток. Действие высокой концентрации соли на микробы используют при посоле рыбы, мяса, а сахара — при приготовлении варенья, джема, повидла.

Дата добавления: 2015-11-14; просмотров: 52 | Нарушение авторских прав

Понятие о микроорганизмах | Микрофлора тела человека | Острые кишечные инфекции | Пищевые отравления | Пищевые отравления немикробного происхождения | Микробиология мяса и мясопродуктов | Микробиология зернопродуктов | Кулинарная обработка мяса и рыбы | Кулинарная обработка других продуктов | Санитарные требования к кулинарной обработке пищи. Санитарные требования к реализации готовой пищи |mybiblioteka.su — 2015-2018 год. (0.108 сек.)

Питание микроорганизмов

Обмен веществ у микробной клетки складывается из поступления питательных веществ, воды в клетку, выделение продуктов жизнедеятельности в окружающую среду через всю поверхность клетки.

Питательные вещества удовлетворяют потребности микроорганизмов в химических элементах, необходимых для синтеза веществ и клеточных структур, и энергии для процессов обмена веществ, роста, размножения, перемещения.

Питательные среды, из которых поступают химические элементы, называют источниками этих элементов: источник углерода, источник азота, источник кислорода.

Т.к. на долю органогенных элементов в клетке приходится до 90% СВ, то в питательной среде основная масса веществ должна приходиться на источники этих элементов.

Источником «О» являются органические вещества, вода, и молекулярный кислород воздуха. Источником «Н» также выступают вода, орг. вещества.

Потребности микроорганизмов в отношении источников углерода и азота отличаются разнообразием.

В зависимости от используемого в конструктивном обмене источника углерода и соответственно типа питания микроорганизмы делятся на две группы: гетеротрофы и автотрофы.

Автотрофы используют в качестве единственного или главного источника углерода для синтеза органических веществ – двуокись углерода (CO2). Гетеротрофы в качестве источника углерода используют в основном органические вещества.

Биосинтез органических веществ из CO2 протекает с потреблением световой энергии (восстановительный процесс) и называется фотосинтезом.

6CO2 + 6H2O →C6H12O6 + 6O2 + АТФ

Лучистая Энергия хим.

энергия связей

Микроорганизмы-автотрофы, реализующие фотосинтез, называют по источнику энергии фототрофами. Микроорганизмы-автотрофы, использующие для биосинтеза органических веществ энергию химических реакций окисления неорганических соединений, называют хемотрофами, а процесс – хемосинтеза.

Гетеротрофы являются хемотрофами, необходимую энергию они получают путём окисления органических веществ.

Помимо источника «С» и энергии при характеристике типа питания микроорганизмов учитывается и природа окисляемого субстрата – донора водорода (электронов). Биологическое окисление органических веществ (в клетках) происходит чаще путём дегидрогенирования – отнятие атомов водорода. Т.к. атом водорода состоит из протона (H+) и электрона (e-), перенос водорода включает и перенос электрона. Вещество, теряющее водород окисляется, а вещество, принимающее водород – восстанавливается.

Микроорганизмы, использующие в качестве донора водорода органические соединения, называются органотрофные, использующие неорганические соединения как доноры водорода (H2, H2S, S, NH3 и др.) – литотрофные.

С учетом вышесказанного, выделяются группы микроорганизмов по типу питания с учётом природы основного: 1) источника «С», 2) энергии, 3) донора «Н»:

Фотолитоавтотрофы (углерод из CO2, световая энергия, неорганический донор водорода) – цианобактерии, пурпурные, зелёные серные бактерии. Преимущественно водные бактерии, содержат различные пигменты, которые поглощают свет. Донор водорода у цианобактерий – вода, у серобактерий – H2S.

Фотоорганотрофы (CO2, световая энергия, простые органические вещества), живущие в водоёмах пурпурные несерные бактерии.

Хемолитоавтотрофы (CO2, окисление неорганических веществ) – играют важную роль в круговороте веществ в природе. К этой группе относятся бактории водоёмов, почв, которые отличаются специфичностью по отношению к окисляемым веществам. Водородные бактерии окисляют водород с образованием воды: 2H2+O2→2H2O;

Нитрифицирующие бактерии окисляют аммиак до нитратов NH3→HNO3.

Бесцветные серобактерии – сероводород окисляют до серной кислоты, железобактерии окисляют закисное железо в окисное.

Хемоорганогетеротрофы (хемогетеротрофы) (всегда органические соединения) – такой тип питания характерен для большинства бактерий, дрожжей, грибов. Среди этой группы различают паратрофы и сапрофиты.

Паратрофы (микробы-паразиты) живут и питаются веществами тела хозяина. Это возбудители заболеваний человека, животных, растений.

Сапрофиты (метатрофы) используют органические вещества субстратов животного и растительного происхождения. Они разлагают органические вещества почвы, воды, вызывают порчу пищевых продуктов. Используются в процессах переработки животного и растительного сырья. Сапрофиты наряду с органическими соединениями вовлекают в обмен веществ небольшие количества CO2 как дополнительный источник углерода.

Источники азота

Для автотрофных м/о источником азота являются неорганические азотсодержащие вещества.

Хемогетеротрофы по отношению к источнику азота проявляют избирательность:

1. Одни способны расти на субстратах, содержащих сложные органические азотсодержащие вещества – азотистые основания, пептиды, большой набор аминокислот, т.к. неспособны синтезировать их самостоятельно из более простых соединений.

Некоторые м/о для синтеза белков достаточно наличия нескольких аминокислот. Они дезаминируют аминокислоту и образующийся NH3 используют в реакциях восстановительного аминирования оксикислот, кетокислот

NH3 + H2 + CH2 – C – COOH → CH2 – CH – COOH + H2O

│ ║ │ │

COOH O COOH NH2

Щавелево-уксусная аспарагиновая кислота

кислота

Или аминокислота субстрата при участии фермента аминотрансферазы м/о путём переаминирования перестраивается

R1-CH-COOH + R2-C-COOH → R1-C-COOH + R1-CH-COOH

│ ║ ║ │

NH2 O O NH2

3. Многие сапрофиты используют неорганические азотсодержащие соединения, особенно хорошо усваиваются соли аммония.

Чем микробы питаются и как размножаются

Из них м/о получают аминогруппу для прямого аминирования оксикетокислот – скелета новой аминокислоты.

(NH4)2SO4 → NH2 → + оксикетокислота → АмК-та

4. Нитриты и нитраты м/о восстанавливают с образованием NH3, который участвует в биосинтетических процессах. Это обусловлено тем, что азот входит в компоненты клетки в основном в восстановленной форме.

Существуют сапрофиты, способные молекулярный азот восстанавливать в аммиак. Их называют азотфиксаторами (Azotbacter, Rhizobium), почвенные м/о.

Источниками зольных элементов для синтеза клеточных веществ для большинства м/о являются минеральные соли. Потребность в них невелика, при недостатке в питательной среде даже одного, служит причиной прекращения роста. Больше всего требуется фосфора, т.к. он входит в состав НК, АТФ, АДФ, принимает участие в биохимических превращениях. P и S некоторые м/о усваивают из органических веществ.

Потребность м/о в витаминах для нормальной жизнедеятельности обусловлена их присутствием в составе коферментов.

Одни м/о должны получать их в готовом виде из питательной среды, поэтому их называют «ростовыми веществами» (недостаток витаминов задерживает рост).

Некоторые м/о сами способны синтезировать витамины из веществ питательной среды и даже в количествах, превышающих собственные потребности.

В промышленных условиях получают эргостерин (провитамин D), используя дрожжи S. cerevisiae и S. carlsbergensis.

Кристаллический витамин D2 получают, используя грибы родов Aspergillus, Pennicillium.

Рибофлавин (B2) – гриб Eremothecium aschbyii;

Цианкобаламин (B12) – Pseudonomas dentrificans, Nocardia rugoso.

Бета-каротин — дрожжи Rhodotoula, актиномицеты, миксобактерии, грибы.

Дата добавления: 2017-03-29; просмотров: 519;

ПОСМОТРЕТЬ ЕЩЕ:

Способы питания бактерий.

Углеродное питание. К числу важнейших химических элементов, необходимых для синтеза органических соединений, относят: углерод (С), азот (N), водород (Н), кислород (О). Свою потребность в водороде и кислороде бактерии удовлетворяют через воду. По способу углеродного питания бактерии делятся на: аутотрофы (автотрофы) и гетеротрофы.

Автотрофы– организмы, которые полностью удовлетворяют свои потребности в углероде за счёт СО2 . Они способны синтезировать органические вещества из неорганических, используя энергию света и окислительные реакции.

Гетеротрофы— организмы, которые не могут полностью удовлетворить свои потребности в углероде за счёт СО2 , а требуют для своего питания готовых органических соединений. Гетеротрофы подразделяются — на сапрофитов и паразитов.

Сапрофиты – источником питания служат мертвые органические субстраты.

Паразиты – живут за счёт живых тканей животных и растений.

Гетеротрофы усваивают углерод из готовых органических соединений, для чего требуется энергия. Существуют 2 источника энергии- фотосинтез и хемосинтез.

Фотосинтез— это синтез за счёт энергии солнечного света. Хемосинтез— это энергия, которую получают за счёт окисления неорганических соединений.

Азотное питание. По способу азотного питания бактерии подразделяются: на аминоавтотрофов и аминогетеротрофов.

Аминоавтотрофы – способны полностью удовлетворять свои потребности в азоте, необходимом для синтеза белков и нуклеиновых кислот, с помощью атмосферного и минерального азота.

Аминогетеротрофы— для роста и размножения нуждаются в готовых органических азотистых соединениях: некоторых аминокислотах и витаминах.

К числу аминоавтотрофов относятся азотфиксирующие бактерии, свободно живущие в почве –клубеньковые бактерии (они размножаются на корнях бобовых растений).Симбиоз их с растениями взаимовыгоден, так как вместе они продуцируют ряд физиологически активных соединений, которые благоприятно влияют на бобовые растения. В почве они обитают как сапрофиты. Вторая группа аминоавтотрофов представлена нитрифицирующими бактериями, которые используют для синтеза белков в качестве источника азота, соли аммиака, азотистой и азотной кислот. Эти 2 группы бактерий играют важную роль в обеспечении плодородия почв.

Аминогетеротрофы для роста и размножения нуждаются в различных органических азотистых соединениях. Многие бактерии синтезирую аминокислоты и основания из минеральных источников азота и нуждаются в витаминах (ростовых факторах): вит. Н, вит.В1 , вит. В2 , вит.В3 , вит.В4, вит.

Хорошо питайте микробы кишечника, иначе они будут питаться вами

В5,вит.В9 .

Для нормальной жизнедеятельности бактерии обязательно нуждаются в ионах: Na, K, Cl, Ca2+ , Mn2+ , Mg2+ ,Fe2+ , Cu2+ , а также в сере и фосфоре, которые поступают в клетку путём диффузии и активного транспорта. Все процессы обмена веществ представляют собой цепь взаимосвязанных во времени и в пространстве саморегулируемых реакций. Каждая из реакций катализируется(ускоряется) соответствующим ферментом.

Ферменты.

Ферменты(от греч fermentum- закваска), или энзимы — специфические белковые катализаторы, присутствующие во всех живых клетках. Их нет у плазмид и некоторых вирусов. У бактерий обнаружены 6 классов ферментов:

1. оксидоредуктазы(катализируют окислительно-восстановительные реакции);

2. трансферазы(катализируют реакции переноса групп атомов и др веществ);

3. гидролазы (катализируют, расщепление различных соединений — гидролиз белков, жиров, углеводов. Белки – до аминокислот и пептонов, жиры –до жирных кислот и глицерина, углеводы – до ди- и моносахаридов);

4. лигазы (катализируют реакции отщепления от субстрата химической группы или, наоборот, присоединение её);

5. изомеразы (катализируют внутримолекулярные превращения);

6. синтетазы(катализируют соединение двух молекул).

Изучение ферментов у бактерий представляет интерес для микробиологической промышленности (их используют в пивоварении, виноделии, для улучшения пористости хлеба). Изучение обмена веществ патогенных бактерий, необходимо для понимания механизмов, с помощью которых они реализуют свою патогенность т.е. для выяснения патогенеза инфекционных заболеваний.

Дыхание бактерий.

По типу дыхания бактерии делятся на:

1. строгие аэробы – размножаются только в присутствии кислорода (О2 ).

2. микроаэрофилы – нуждаются в уменьшенной концентрации кислорода.

3. факультативные анаэробы — способны потреблять глюкозу и размножаться как в аэробных так и в анаэробных условиях.

4. строгие анаэробы – размножаются только при отсутствии кислорода.

К аэробам относят таких микроорганизмов как возбудитель холеры, туберкулёза и дифтерии, а к анаэробам возбудитель столбняка и газовой гангрены.

Дата добавления: 2016-09-06; просмотров: 2188;

Похожие статьи:

Оставьте комментарий